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Abstract

In this thesis, we have proposed some novel thought experiments involving foun-
dations of quantum mechanics and quantum information theory, using quantum
entanglement property. Concerning foundations of quantum mechanics, we have
suggested some typical systems including two correlated particles which can
distinguish between the two famous theories of quantum mechanics, i.e. the
standard and Bohmian quantum mechanics, at the individual level of pair of
particles. Meantime, the two theories present the same predictions at the en-
semble level of particles. Regarding quantum information theory, two theoretical
quantum communication schemes including quantum dense coding and quan-
tum teleportation schemes have been proposed by using entangled spatial states
of two EPR particles shared between two parties. It is shown that the rate of
classical information gain in our dense coding scheme is greater than some pre-
viously proposed multi-qubit protocols by a logarithmic factor dependent on
the dimension of Hilbert space. The proposed teleportation scheme can provide
a complete wave function teleportation of an object having other degrees of
freedom in our three-dimensional space, for the first time. All required unitary
operators which are necessary in our state preparation and Bell state measure-
ment processes are designed using symmetric normalized Hadamard matrix,
some basic gates and one typical conditional gate, which are introduced here for
the first time.
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PREFACE

The present dissertation consists of two parts which are mainly based on the
following papers and manuscripts:

• Bohmian prediction about a two double-slit experiment and its disagree-
ment with standard quantum mechanics, M. Golshani and O. Akhavan, J.
Phys. A 34, 5259 (2001); quant-ph/0103101.

• Reply to: Comment on “Bohmian prediction about a two double-slit ex-
periment and its disagreement with SQM” O. Akhavan and M. Golshani,
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• A two-slit experiment which distinguishes between standard and Bohmian
quantum mechanics, M. Golshani and O. Akhavan, quant-ph/0009040.

• Experiment can decide between standard and Bohmian quantum mechan-
ics, M. Golshani and O. Akhavan, quant-ph/0103100.

• On the experimental incompatibility between standard and Bohmian quan-
tum mechanics, M. Golshani and O. Akhavan, quant-ph/0110123.

• Quantum dense coding by spatial state entanglement, O. Akhavan, A.T.
Rezakhani, and M. Golshani, Phys. Lett. A 313, 261 (2003); quant-ph/0305118.

• Comment on “Dense coding in entangled states”, O. Akhavan and A.T.
Rezakhani, Phys. Rev. A 68, 016302 (2003); quant-ph/0306148.

• A scheme for spatial wave function teleportation in three dimensions, O.
Akhavan, A.T. Rezakhani, and M. Golshani, J. Quant. Inf. Comp., sub-
mitted.

The first part of this dissertation includes three chapters. In chapter 1, an
introduction about the foundations of quantum mechanics, which is mainly con-
centrated on explanations of; some problems in the standard quantum mechan-
ics, the quantum theory of motion, some new insights presented by Bohmian
quantum mechanics and noting some objections that have been advanced against
this theory, has been presented. In chapter 2, by using position entanglement
property of two particles in a symmetrical two-plane of double-slit system, we
have shown that the standard and Bohmian quantum mechanics can predict
different results at an individual level of entangled pairs. However, as expected,
the two theories predict the same interference pattern at an ensemble level of
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http://arxiv.org/abs/quant-ph/0306148
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the particles. In chapter 3, the predictions of the standard and Bohmain quan-
tum mechanics have been compared using a double-slit system including two
correlated particles. It has been shown that using a selective joint detection of
the two particles at special conditions, the two theories can be distinguished
at a statistical level of the selected particles. But, by considering all particles,
the predictions of the two theories are still identical at the ensemble level of
particles.

In the second part of the dissertation there are also three chapters. In its
first chapter, i.e. chapter 4, an introduction about quantum information theory
including quantum dense coding and teleportation has been presented. In chap-
ter 5, using a two-particle source similar to that is applied in chapter 1, a more
efficient quantum dense coding scheme has been proposed. In this regard, the
suitable encoding and decoding unitary operators along with its corresponding
Bell states have been studied. The rate of classical information gain of this
scheme has been obtained and then compared with some other well-known pro-
tocols. Furthermore, possibility of designing of the required position operators
using some basic gates and one conditional position gates has been investigated.
Next, in chapter 6, using a system the same as the dense coding scheme, wave
function teleportation of a three dimensional object having some other degrees
of freedom has been studied. Concerning this, the required operators for per-
forming Bell state measurement and reconstruction process have been designed
using some position and momentum gates.

In appendix, which consists three sections, some more details on our con-
sidered EPR source, preparing and measuring processes utilized in some initial
cases of the dense coding and teleportation schemes, and comparison of our
dense coding scheme with some other ones can be found.



Part I

NEW SUGGESTED EXPERIMENTS RELATED TO

THE FOUNDATIONS OF QUANTUM MECHANICS





1. INTRODUCTION-FOUNDATIONS OF QUANTUM

MECHANICS

1.1 Standard quantum mechanics

The standard view of quantum mechanics (SQM), accepted almost universally
by physicists, is commonly termed the Copenhagen interpretation. This inter-
pretation requires complementarity, e.g. wave-particle duality, inherent indeter-
minism at the most fundamental level of quantum phenomena, and the impos-
sibility of an event-by-event causal representation in a continuous space-time
background [1]. In this regard, some problems embodied in this interpretation
are concisely described in the following.

1.1.1 Some of the major problems of SQM

Measurement

As an example, consider a two-state microsystem whose eigenfunctions are la-
belled by ψ+ and ψ−. Furthermore, there is a macrosystem apparatus with
eigenfunctions φ+ and φ− corresponding to an output for the microsystem hav-
ing been in the ψ+ and ψ− states, respectively. Since prior to a measurement
we do not know the state of the microsystem, it is a superposition state given
by

ψ0 = αψ+ + βψ−, |α|2 + |β|2 = 1. (1.1)

Now, according to the linearity of Scrödinger’s equation, the final state obtained
after the interaction of the two systems is

Ψ0 = (αψ+ + βψ−)φ0 −→ Ψout = αψ+φ+ + βψ−φ− (1.2)

where it is assumed that initially the two systems are far apart and do not
interact. It is obvious that, the state on the far right side of the last equation
does not correspond to a definite state for a macrosystem apparatus. In fact,
this result would say that the macroscopic apparatus is itself in a superposition
of both plus and minus states. Nobody has observed such macroscopic super-
positions. This is the so-called measurement problem, since the theory predicts
results that are in clear conflict with all observations. It is at this point that the
standard program to resolve this problem invokes the reduction of wave packet
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upon observation, that is,

αψ+φ+ + βψ−φ− −→
{
ψ+φ+, P+ = |α|2;
ψ−φ−, P− = |β|2. (1.3)

Various attempts to find reasonable explanation for this reduction are at the
heart of the measurement problem.

Schrödinger’s cat

Concerning the measurement problem, there is a paradox introduced by Schrödinger
in 1935. He suggested the coupling of an uranium nucleus or atom as a microsys-
tem and a live cat in a box as a macrosystem. The system is so arranged that,
if the nucleus with a life time τ0 decays, it triggers a device that kills the cat.
Now the point is to consider a quantum description of the time evolution of the
system. If Ψ(t), φ and ψ represent the wave functions of the system, cat and
atom, respectively, then the initial state of the system would be

Ψ(0) = ψatomφlive. (1.4)

This initial state evolves into

Ψ(t) = α(t)ψatomφlive + β(t)ψdecayφdead (1.5)

and the probabilities of interest are

Plive(t) = |〈ψatomφlive|Ψ(t)〉|2 ∼ e−t/τ0 (1.6)

Pdead(t) = |〈ψdecayφdead|Ψ(t)〉|2 ∼ 1− e−t/τ0. (1.7)

As time goes on, chance looks less for the cat’s survival. Before one observes the
system, Ψ(t) represents a superposition of a live and a dead cat. However, after
observation the wave function is reduced to live or dead one. Now, the main
question which was posed by Schrödinger is: what does Ψ(t) represent? Possi-
ble answers are that, it represents (1) our state of knowledge, and so quantum
mechanics is incomplete, and (2) the actual state of the system which beers a
sudden change upon observation. If we choose (1) (which is what Schrödinger
felt intuitively true), then quantum mechanics is incomplete, i.e., there are phys-
ically meaningful questions about the system that it cannot answer-surly the
cat was either alive or dead before observation. On the other hand, Choice (2)
faces us with the measurement problem, in which the actual collapse of the wave
function must be explained.

The classical limit

It is well established that when a theory supersedes an earlier one, whose domain
of validity has been determined, it must reduce to the old one in a proper limit.
For example, in the special theory of relativity there is a parameter β = v/c
such that when β ≪ 1, the equations of special relativity reduce to those of
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classical mechanics. In general relativity, also, the limit of weak gravitational
fields or small space-time curvature leads to Newtonian gravitational theory.
If quantum mechanics is to be a candidate for a fundamental physical theory
that replaces classical mechanics, then we would expect that there is a suitable
limit in which the equations of quantum mechanics approach those of classical
mechanics. It is often claimed that the desired limit is h̄ −→ 0. But h̄ is not
a dimensionless constant and it is not possible for us to set it equal to zero. A
more formal attempt at a classical limit is Ehrenfest’s theorem, according to
which expectation values satisfy Newton’s second law as

〈F〉 = m
d2〈r〉
dt2

. (1.8)

This really only implies that the centroid of the packet follows the classical
trajectory. However, wave packets spread and the above equation is just not
the same as F = ma. A similar formal attempt is the WKB (Wentzel-Kramers-
Brillouin) approximation which is often advertised as a classical limit of the
Schrödinger’s equation. Again, there is not a well-defined limit (in terms of
a dimensionless parameter) for which one can obtain exactly the equations of
classical mechanics for all future of times. Therefore, if it is not possible to
find a classical description for macroscopic objects in a suitable limit, then we
do not have a complete theory that is applicable to both the micro and macro
domains.

Concept of the wave function

The quantum theory that developed in the 1920s is related to its classical pre-
decessor by the mathematical procedure of quantization, in which classical dy-
namics variables are replaced by operators. Hence, a new entity appeares on
which the operators act, i.e., the wave function. For a single-body system this
is a complex function, ψ(x, t), and for a field it is a complex functional, ψ[φ, t].
In fact, the wave function introduces a new notion of the state of a physical
system. But, in prosecuting their quantization procedure, the founding fathers
introduced the new notion of the state not in addition to the classical vari-
ables but instead of them. They could not see, and finally did not want to see,
even when presented with a consistent example, how to retain in some form the
assumption that matter has substance and form, independently of whether or
not it is observed. The wave function alone was adapted as the most complete
characterizing the state of a system. Since there was no deterministic way to
describe individual processes using just the wave function, it seemed natural to
claim that these are indeterminate and unanalyzable in principle. Furthermore,
quantum mechanics appears essentially as a set of working rules for computing
the likely outcomes of certain as yet undefined processes called measurement.
So, one might well ask what happened to the original program embodied in the
old quantum theory of explaining the stability of atoms as objective structures
in space-time. In fact, quantum mechanics leaves the primitive notion of sys-
tem undefined; it contains no statement regarding the objective constitution of
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matter corresponding to the conception of particles and fields employed in clas-
sical physics. There are no electrons or atoms in the sense of distinct localized
entities beyond the act of observation. These are simply names attributed to
the mathematical symbols ψ to distinguish one functional form from another
one. So the original quest to comprehend atomic structure culminated in just
a set of rules governing laboratory practice. To summarize, according to the
completeness assumption of SQM, the wave function is associated with an indi-
vidual physical system. It provides the most complete description of the system
that is, in principle, possible. The nature of the description is statistical, and
concerns the probabilities of the outcomes of all conceivable measurements that
may be performed on the system. Therefore, in this view, quantum mechanics
does not present a causal and deterministic theory for the universe.

1.2 The quantum theory of motion

We have seen that, the quantum world is inexplicable in classical terms. The
predictions concerning the interaction of matter and light, embodied in Newto-
nian mechanics and Maxwell’s equations, are inconsistent with the experimen-
tal facts at the microscopic level. An important feature of quantum effects is
their apparent indeterminism, that individual atomic events are unpredictable,
uncontrollable, and literally seem to have no cause. Regularities emerge only
when one considers a large ensemble of such events. This indeed is generally
considered to constitute the heart of the conceptual problem posed by quantum
phenomena. A way of resolving this problem is that the wave function does not
correspond to a single physical system but rather to an ensemble of systems.
In this view, the wave function is admitted to be an incomplete representation
of actual physical states and plays a role roughly analogous to the distribution
function in classical statistical mechanics. Now, to understand experimental
results as the outcome of a causally connected series of individual processes,
one can seek further significance of the wave function (beyond its probabilistic
aspect), and can introduce other concepts (hidden variables) in addition to the
wave function. It was in this spirit that Bohm [2] in 1952 proposed his theory
and showed how underlying quantum mechanics is a causal theory of the motion
of waves and particles which is consistent with a probabilistic outlook, but does
not require it. In fact, the additional element that he introduced apart from the
wave function is just a particle, conceived in the classical sense of pursuing a
definite continuous track in space-time. The basic postulates of Bohm’s quan-
tum mechanics (BQM) can be summarized as follows:
1. An individual physical system comprises a wave propagating in space-time
together with a particle which moves continuously under the guidance of the
wave.
2. The wave is mathematically described by ψ(x, t) which is a solution to the
Scrödinger’s equation:

ih̄
∂ψ

∂t
= (− h̄2

2m
∇2 + V )ψ (1.9)
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3. The particle motion is determined by the solution x(t) to the guidance
condition

ẋ =
1

m
∇S(x, t)|x=x(t) (1.10)

where S is the phase of ψ.
These three postulates on their own constitute a consistent theory of motion.
Since BQM involves physical assumptions that are not usually made in quantum
mechanics, it is preferred to consider it as a new theory of motion which is
appropriately called the quantum theory of motion [3]. In order to ensure the
compatibility of the motions of the ensemble of particles with the results of
quantum mechanics, Bohm added the following further postulate:
4. The probability that a particle in the ensemble lies between the points x and
x + dx at time t is given by

R2(x, t)d3x (1.11)

where R2 = |ψ|2. This shows that the concept of probability in BQM only enters
as a subsidiary condition on a causal theory of the motion of individuals, and
the statistical meaning of the wave function is of secondary importance. Failure
to recognize this has been the source of much confusion in understanding the
causal interpretation.

Now, here, it is proper to compare and contrast Bohm’s quantum theory
with the standard one. It can be seen that, some of the most perplexing inter-
pretational problems of SQM are simply solved in BQM.

1.2.1 Some new insights by BQM

No measurement problem

One of the most elegant aspects of BQM is its treatment on the measurement
problem, where it becomes a non-problem. In BQM, measurement is a dy-
namical and essentially many-body process. There is no collapse of the wave
function, and so no measurement problem. The basic idea is that a particle
always has a definite position before measurement. So there is no superposition
of properties, and measurement or observation is just an attempt to discover
this position.

To clarify the subject, consider, as an example, an inhomogeneous magnetic
field which produces a spatial separation among the various angular momentum
components of an incident beam of atoms. The incident wave packet g(x) moves
with a velocity v0 along the y-axis. This function g(x) (e.g., a Gaussian) is
fairly sharply peaked about x = 0. The initial quantum state of the atom is a
superposition of angular momentum eigenstates ψn(ξ) of the atom. Thus, the
initial wave function for the system before the atom has entered the region of
the magnetic field can be written as

Ψ0(x, ξ, t) = g(x− v0t)
∑

n

Cnψn(ξ). (1.12)
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The interaction between the inhomogeneous magnetic field and the magnetic
moment of the atom exerts a net force on the atom in the z-direction. Once
the packet emerges from the field, the n components of the packet diverge along
separate paths. After that sufficient time has elapsed, the n component packets
no longer overlap and have essentially disjoint supports. Then the wave function
has evolved into

Ψ(x, ξ, t) =
∑

n

Cngn[x− xn(t)]eiϕnψn(ξ) (1.13)

where xn(t) show the particle trajectories and the ϕn are simply constant phases.
The description given sofar is similar to an account of a measurement in SQM
frame. So, the next step would be to apply the projection postulate once an
atom has been observed. One would simply erase the other packets. In BQM,
however, the situation is different. The probability of finding the atom at some
particular position is

P (x, ξ, t) =
∑

n

|Cn|2|gn[x− xn(t)]|2|ψn(ξ)|2. (1.14)

There are no interference or cross terms here, because the various gn no longer
overlap. After the particle has been found in one packet, it cannot be in any
of the others and has negligible probability of crossing to other ones (because
P effectively vanishes between the packets). Now, it is necessary that the mi-
crosystem interact, effectively irreversibly, with a macroscopic measuring device
that has many degrees of freedom to make it practically impossible (i.e., over-
whelmingly improbable) for these lost wave packets to interfere once again with
the one actually containing the particle. Thus, the process of measurement is a
two-step one in which (1) the quantum states of the microsystem are separated
into nonoverlapping parts by an, in principle, reversible interaction and (2) a
practically irreversible interaction with a macroscopic apparatus registers the
final results.

The classical limit

By using the guidance condition along with the Schrödinger’s equation, the
quantum dynamical equation for the motion of a particle with mass m is given
by

dp

dt
= −∇(V +Q) (1.15)

where V is the usual classical potential energy and Q is the so-called quantum
potential that is given in terms of the wave function as

Q = − h̄2

2m

∇2R

R
. (1.16)

This Q has the classically unexpected feature that its value depends sensitively
on the shape, but not necessarily strongly on the magnitude of R, so that Q
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need not falloff with distance as V does. Now, it is evident that there are no
problems in obtaining the classical equations of motion from BQM, because the
above dynamical equation has the form of Newton’s second law. In fact, when
(Q/V ) ≪ 1 and (∇Q/∇V ) ≪ 1 (dimensionless parameters) the quantum dy-
namical equation becomes just the classical equation of motion. So the suitable
limit is Q −→ 0 (in the sense of (Q/V ) −→ 0 and also (∇Q/∇V ) −→ 0), rather
than anything like h̄ −→ 0. It is interesting to know that there are solutions
to the Schrödinger’s equation with no classical limit (quantum system with no
classical analogue). Thus, one cannot exclude a priori the possibility that there
be a class of solutions to the classical equations of motion which do not corre-
spond to the limit of some class of quantum solutions (classical systems with
no quantum analogue). Therefore, it seems reasonable to conceive classical me-
chanics as a special case of quantum mechanics in the sense that the latter has
new elements (h̄ and Q) not anticipated in the former. However, the possibility
that the classical theory admits more general types of ensemble which cannot
be described using the limit of quantum ensembles, because the latter corre-
sponds to a specific type of linear wave equation and satisfy special conditions
such as being built from single-valued conserved pure states, suggests that the
two statistical theories can be considered independent while having a common
domain of application. This domain is characterized by Q −→ 0 in the quantum
theory. Now, there is a well-defined conceptual and formal connection between
the classical and quantum domains but, as a new result, they merely intersect
rather than are being contained in the other.

The uncertainty relations

One of the basic features of quantum mechanics is the association of Hermi-
tian operators with physical observables, and the consequent appearance of
noncommutation relations between the operators. For example, whatever the
interpretation, from SQM or BQM one can obtain the Heisenberg uncertainty
relation

△xi△pj ≥ (h̄/2)δij (1.17)

for operators x and p that satisfy [xi, pj ] = ih̄δij [3]. As a result, a wave function
cannot be simultaneously an eigenfunction of x and p. Since measuring of an
observable involves the transformation of the wave function into an eigenfunc-
tion of the associated operator, it appears that a system cannot simultaneously
be in a state by which its position and momentum are precisely known. How
may one reconcile the uncertainty relation with the assumption that a particle
can be ascribed simultaneously well-defined position and momentum variables
as properties that exist during all interactions, including measurements? To
answer this, we note that our knowledge of the state of a system should not be
confused with what the state actually is. Quantum mechanics is constructed so
that we cannot observe position and momentum simultaneously, but this fact
does not prevent us to think of a particle having a well-defined track in reality.
Bohm’s discussion shows how the act of measurement, through the influence of
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the quantum potential, can disturb the microsystem and thus produce an un-
certainty in the outcome of a measurement [2]. In other words, we can interpret
the uncertainty relations as an expression of the different types of motion acces-
sible to a particle when its wave undergoes the particular types of interaction
appropriate to the measurement. In fact, the formal derivation of the uncer-
tainty relations goes through as before, but now we have some understanding of
how the spreads come about physically. According to BQM, the particle has a
position and momentum prior to, during, and after the measurement, whether
this be of position, momentum or any other observable. But in a measurement,
we usually cannot observe the real value that an observable had prior to the
measurement. In fact, as Bohm mentioned [2], in the suggested new interpre-
tation, the so-called observables are not properties belonging to the observed
system alone, but instead potentialities whose precise development depends just
as much on the observing apparatus as on the observed system.

Concept of the wave function

As we have seen, to find a connection between the two aspects of matter, i.e.
particle and wave, one can rewrite the complex Schrödinger’s equation as a
coupled system of equations for the real fields R and S which are defined by
ψ = ReiS . Then, in summary, these fields can play the following several roles
simultaneously:
1. They are associated with two physical fields propagating in space-time and
define, together with the particle, an individual physical system.
2. They act as actual agents in the particle motion, via the quantum potential.
3. They enter into the definition of properties associated with a particle (mo-
mentum, energy and angular momentum). These are not arbitrarily specified
but are a specific combination of these fields, and are closely related to the as-
sociated quantum mechanical operators.
4. They have other meanings which ensure the consistency of BQM with SQM,
and moreover, their connection with the classical mechanics.
Generally in BQM, the wave function plays two conceptually different roles. It
determines (1) the influence of the environment on the quantum system and (2)
the probability density by P = |ψ|2. Now, since the guidance condition along
with the Schrödinger’s equation uniquely specify the future and past continu-
ous evolution of the particle and field system, BQM forms the basis of a causal
interpretation of quantum mechanics.

Wave function of the universe

By quantizing the Hamiltonian constraint of general relativity in the standard
way one obtains the Wheeler-De Witt’s equation, which is the Schrödinger’s
equation of the gravitational field. In this regard, there is an attempt to apply
quantum mechanics to the universe as a whole in the so-called quantum cos-
mology. This has been widely interpreted according to the many-worlds picture
of quantum mechanics. But there is no need for this, because acoording to
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many physicists, quantum cosmology deals with a single system - our universe.
We have seen that, BQM is eminently suited to a description of systems that
are essentially unique, such as the universe. Therefore, quantum cosmology is
independent of any subsidiary probability interpretation one may like to attach
to the wave function.

Quantum potential as the origin of mass?

In BQM it can be shown that the equation of motion of a bosonic massless
quantum field is given by

∂2ψ(x, t) = −δQ[ψ(x), t]

δψ(x)
|ψ(x)=ψ(x,t) (1.18)

which generally implies noncovariant and nonlocal properties of the field [3].
In fact, these features characterize the extremes of quantum behavior and, in
principle, there exist states for which the right hand side of the above equation of
motion is a scalar and local function of the space-time coordinate. The fact that
this term is finite means that although the wave will be essentially nonclassical
but will obey the type of equation we might postulate for a classical field, in
which the scalar wave equation is equated to some function of the field. Here,
the interesting point is that using quantization of a massless field it is possible
to give mass to the field in the sense that the quantum wave obeys the classical
massive Klein-Gordon equation

(∂2 +m2)ψ = 0 (1.19)

as a special case for the equation of motion of a massless quantum field, where
m is a real constant [3]. Therefore, the quantum potential acts so that the
massless quantum field behaves as if it were a classical field with mass.

1.2.2 Some current objections to BQM

There are some of the typical objections that have been advanced against BQM.
So, here, these objections are summarized and some preliminary answers are
given to them.

Predicting nothing new

It is completely right that BQM was constructed so that its predictions are
exactly the same as SQM’s ones at the ensemble level. But, BQM permits
more detailed predictions to be made pertaining to the individual processes.
Whether this may be subjected to an experimental test is an open question,
which is studied here using some examples.
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Nonlocality is the price to be paid

Nonlocality is an intrinsic and clear feature of BQM. This property does not
contradict special theory of relativity and the statistical predictions of relativis-
tic quantum mechanics. But sometimes it is considered to be in some way a
defect, because local theories are considered to be preferable. Yet nonlocality
seems to be a small price to pay if the alternative is to forego any account of
objective processes at all (including local ones). Furthermore, Aspect’s experi-
ment [4] established that, quantum mechanics is really a nonlocal theory without
superluminal signalling [5]. Therefore, it is not necessary to worry about this
property.

Existence of trajectories cannot be proved

BQM reproduces the assertion of SQM that one cannot simultaneously perform
a precise measurement on both position and momentum. But this cannot be
adduced as an evidence against the tenability of the trajectory concept. Science
would not exist if ideas were only admitted when evidence for them already
exists. For example, one cannot after all empirically prove the completeness
postulate. The argument in favor of trajectory lies elsewhere, in its capacity to
make intelligible a large amount of empirical facts.

An attempt to return to classical physics

BQM has been often objected for reintroducing the classical paradigm. But,
as we mentioned in relation to BQM’s classical limit, BQM is a more complete
theory than SQM and classical mechanics, and includes both of them nearly
independent theories in different domains, and also represents the connection
between them. Therefore, BQM which apply the quantum states to guide the
particle is, in principle, an intelligible quantum theory, not a classical one.

No mutual action between the guidance wave and the particle

Among the many nonclassical properties exhibited by BQM, one is that the
particle does not react dynamically on the wave that is guided by. But, while
it may be reasonable to require reciprocity of actions in classical theory, this
cannot be regarded as a logical requirement of all theories that employ the
particle and field concepts, particularly the ones involving a nonclassical field.

More complicated than quantum mechanics

Mathematically, BQM requires a reformulation of the quantum formalism, but
not an alternation. The present reason is that SQM is not the one most appro-
priate to the physical interpretation. But, mathematically, the desirable theory,
particularly at the ensemble level, can be considered quantum mechanics, be-
cause the quantum potential is implicit in the Schrödinger’s equation.
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In part I of this dissertation, we have concentrated on the first objection and
studied some thought experiments in which BQM can predict different results
from SQM, at the individual level.



2. TWO DOUBLE-SLIT EXPERIMENT USING POSITION

ENTANGLEMENT OF EPR PAIR

2.1 Introduction

According to the standard quantum mechanics (SQM), the complete descrip-
tion of a system of particles is provided by its wave function. The empirical
predictions of SQM follow from a mathematical formalism which makes no use
of the assumption that matter consists of particles pursuing definite tracks in
space-time. It follows that the results of the experiments designed to test the
predictions of the theory, do not permit us to infer any statement regarding the
particle–not even its independent existence.

In the Bohmian quantum mechanics (BQM), however, the additional ele-
ment that is introduced apart from the wave function is the particle position,
conceived in the classical sense as pursuing a definite continuous track in space-
time [1-3]. The detailed predictions made by this causal interpretation explains
how the results of quantum experiments come about, but it is claimed that
they are not tested by them. In fact, when Bohm [2] presented his theory in
1952, experiments could be done with an almost continuous beam of particles,
but not with individual particles. Thus, Bohm constructed his theory in such
a fashion that it would be impossible to distinguish observable predictions of
his theory from SQM. This can be seen from Bell’s comment about empirical
equivalence of the two theories when he said:“It [the de Broglie-Bohm version
of non-relativistic quantum mechanics] is experimentally equivalent to the usual
version insofar as the latter is unambiguous”[5]. So, could it be that a certain
class of phenomena might correspond to a well-posed problem in one theory but
to none in the other? Or might definite trajectories of Bohm’s theory lead to a
prediction of an observable where SQM would just have no definite prediction
to make?

To draw discrepancy from experiments involving the particle track, we have
to argue in such a way that the observable predictions of the modified theory
are in some way functions of the trajectory assumption. The question raised
here is whether BQM’s laws of motion can be made relevant to experiment. At
first, it seems that definition of time spent by a particle within a classically for-
bidden barrier provides a good evidence for the preference of BQM. But, there
are difficult technical questions, both theoretically and experimentally, that are
still unsolved about this tunnelling times [1]. Furthermore, a recent work in-
dicates that it is not practically feasible to use tunnelling effect to distinguish
between the two theories [6]. In another proposal, Englert et al. [7] and Scully
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[8] have claimed that in some cases Bohm’s approach gives results that disagree
with those obtained from SQM and, in consequence, with experiment. However,
Dewdney et al. [9] and then Hiley et al. [10] showed that the specific objec-
tions raised by them cannot be sustained. Meanwhile, Hiley believes that no
experiment can decide between the standard and Bohm’s interpretation. On the
other hand, Vigier [11], in his recent work, has given a brief list of new experi-
ments which suggests that the U(1) invariant massless photon, with properties
of light within the standard interpretation, are too restrictive and that the O(3)
invariant massive photon causal de Broglie-Bohm interpretation of quantum me-
chanics, is now supported by experiments. In addition, Leggett [12] considered
some thought experiments involving macrosystems which can predict different
results for SQM and BQM. 1 In other work, Ghose et al. [13, 14] indicated that
although BQM is equivalent to SQM when averages of dynamical variables are
taken over a Gibbs ensemble of Bohmian trajectories, the equivalence breaks
down for ensembles built over clearly separated short intervals of time in spe-
cially entangled two-bosonic particle systems. Moreover, Ghose [15] showed that
BQM is incompatible with SQM unless the Bohmian system corresponding to
an SQM system is ergodic. Some other recent work in this regard can be also
found in [16, 17, 18, 19].

Here, using an original EPR source [20] placed between two double-slit plane,
we have suggested a thought experiment which can distinguish between the stan-
dard and Bohmian quantum mechanics [21, 22]. Some details on the considered
EPR source have been examined to clarify the realizability of this experiment.
Finally, an experimental effort for the realization of this thought experiment has
been indicated [23].

2.2 Description of the proposed experiment

To distinguish between SQM and BQM we consider the following scheme. A
pair of identical non-relativistic particles with total momentum zero, labelled
by 1 and 2, originate from a source S that is placed exactly in the middle of
a two double-slit screens, as shown in Fig. 2.1. We assume that the intensity
of the beam is so low that during any individual experiment we have only a
single pair of particles passing through the slits. In addition, we assume that
the detection screens S1 and S2 register only those pairs of particles that reach
the two screens simultaneously. Thus, we are sure that the registration of single
particles is eliminated from final interference pattern. The detection process at
the screens S1 and S2 may be nontrivial, but they play no causal role in the basic
phenomenon of the interference of particles waves [3]. In the two-dimensional
system of coordinates (x, y) whose origin S is shown, the center of slits lie at
the points (±d,±Y ). Suppose that before the arrival of the two particles on the

1 Leggett [12] assumes that the experimental predictions of SQM will continue to be realized
under the extreme conditions specified, although a test of this hypothesis is part of the aim
of the macroscopic quantum cohrence program. In addition, he considered BQM as another
interpretation of the same theory rather than an alternative theory.
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Fig. 2.1: A two double-slit experiment configuration. Two identical particles with
zero total momentum are emitted from the source S and then they pass
through slits A and B

′
or B and A

′
. Finally, they are detected on S1 and S2

screens, simultaneously. It is necessary to note that dotted lines are not real
trajectories.

slits, the entangled wave function describing them is given by

ψin(x1, y1;x2, y2; t) = χ(x1, x2)h̄

∫ +∞

−∞
exp[iky(y1 − y2)]dkye−iEt/h̄

= 2πh̄χ(x1, x2)δ(y1 − y2)e−iEt/h̄ (2.1)

where E = E1 +E2 = h̄2(k2
x+k2

y)/m is the total energy of the system of the two
particles, and χ(x1, x2) is the x-component of the wave function that could have
a form similar to the y-component. However, its form is not important for the
present work. The wave function (2.1) is just the one represented in [20], and it
shows that the two particles have vanishing total momentum in the y-direction,
and their y-component of the center of mass is exactly located on the x-axis.
This is not inconsistent with Heisenberg’s uncertainty principle, because

[py1 + py2 , y1 − y2] = 0. (2.2)

The plane wave assumption comes from large distance between source S and
double-slit screens. To avoid the mathematical complexity of Fresnel diffraction
at a sharp-edge slit, we suppose the slits have soft edges that generate waves
having identical Gaussian profiles in the y-direction while the plane wave in the
x-direction is unaffected [3]. The instant at which the packets are formed will



2. Two double-slit experiment using position entanglement of EPR pair 17

be taken as our zero of time. Therefore, the four waves emerging from the slits
A, B, A

′
and B

′
are initially

ψA,B(x, y) = (2πσ2
0)−1/4e−(±y−Y )2/4σ2

0ei[kx(x−d)+ky(±y−Y )]

ψA′ ,B′ (x, y) = (2πσ2
0)−1/4e−(±y+Y )2/4σ2

0 ei[−kx(x+d)+ky(±y+Y )] (2.3)

where σ0 is the half-width of each slit. At time t the general total wave func-
tion at a space point (x, y) of our considered system for bosonic and fermionic
particles is given by

ψ(x1, y1;x2, y2; t) = N [ψA(x1, y1, t)ψB′ (x2, y2, t)± ψA(x2, y2, t)ψB′ (x1, y1, t)

+ψB(x1, y1, t)ψA′ (x2, y2, t)± ψB(x2, y2, t)ψA′ (x1, y1, t)]

(2.4)

where N is a reparametrization constant that its value is unimportant in this
work and

ψA,B(x, y, t) = (2πσ2
t )

−1/4e−(±y−Y−h̄kyt/m)2/4σ0σt

×ei[kx(x−d)+ky(±y−Y )−Et/h̄]

ψA′ ,B′ (x, y, t) = (2πσ2
t )

−1/4e−(±y−Y−h̄kyt/m)2/4σ0σt

×ei[−kx(x+d)+ky(±y−Y )−Et/h̄] (2.5)

with

σt = σ0(1 +
ih̄t

2mσ2
0

). (2.6)

In addition, the upper and lower sings in the total wave function (2.4) refer to
symmetric and anti-symmetric wave function under exchange of particle 1 to
particle 2, corresponding to bosonic and fermionic property, while in Eq. (2.5)
they refer to upper and lower slits, respectively. In the next section, we shall
use BQM to derive some of the predictions of this proposed experiment.

2.3 Bohmian quantum mechanics prediction

In BQM, the complete description of a system is given by specifying the position
of the particles in addition to their wave function which has the role of guiding
the particles according to following guidance condition for n particles, with
masses m1,m2, ...,mn

ẋi(x, t) =
1

mi
∇iS(x, t) =

h̄

mi
Im

(∇iψ(x, t)

ψ(x, t)

)
(2.7)

where x = (x1,x2, . . . ,xn) and

ψ(x, t) = R(x, t)eiS(x,t)/h̄ (2.8)
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is a solution of Schrödinger’s wave equation. Thus, instead of SQM with indis-
tinguishable particles, in BQM the path of particles or their individual histories
distinguishes them and each one of them can be studied separately [3]. In addi-
tion, Belousek [25] in his recent work, concluded that the problem of Bohmian
mechanical particles being statistically (in)distinguishable is a matter of theory
choice underdetermined by logic and experiment, and that such particles are in
any case physically distinguishable. For our proposed experiment, the speed of
the particles 1 and 2 in the y-direction is given , respectively, by

ẏ1(x1, y1;x2, y2; t) =
h̄

m
Im(

∂y1ψ(x1, y1;x2, y2; t)

ψ(x1, y1;x2, y2; t)
)

ẏ2(x1, y1;x2, y2; t) =
h̄

m
Im(

∂y2ψ(x1, y1;x2, y2; t)

ψ(x1, y1;x2, y2; t)
). (2.9)

With the replacement of ψ(x1, y1;x2, y2; t) from Eqs. (2.4) and (2.5), we have

ẏ1 = N h̄
m Im{ 1

ψ
[[−2(y1 − Y − h̄kyt/m)/4σ0σt + iky]ψA1ψB′

2

± [−2(y1 + Y + h̄kyt/m)/4σ0σt − iky]ψA2ψB′
1

+ [−2(y1 + Y + h̄kyt/m)/4σ0σt − iky]ψB1ψA′
2

± [−2(y1 − Y − h̄kyt/m)/4σ0σt + iky]ψB2ψA′
1
]}

ẏ2 = N h̄
m Im{ 1

ψ
[[−2(y2 + Y + h̄kyt/m)/4σ0σt − iky]ψA1ψB′

2

± [−2(y2 − Y − h̄kyt/m)/4σ0σt + iky]ψA2ψB′
1

+ [−2(y2 − Y − h̄kyt/m)/4σ0σt + iky]ψB1ψA′
2

± [−2(y2 + Y + h̄kyt/m)/4σ0σt − iky]ψB2ψA′
1
]} (2.10)

where, for example, the short notation ψA(x1, y1, t) = ψA1 is used. Furthermore,
from Eq. (2.5) it is clear that

ψA(x1, y1, t) = ψB(x1,−y1, t)
ψA(x2, y2, t) = ψB(x2,−y2, t)
ψB′ (x1, y1, t) = ψA′ (x1,−y1, t)
ψB′ (x2, y2, t) = ψA′ (x2,−y2, t) (2.11)

which indicates the reflection symmetry of ψ(x1, y1;x2, y2; t) with respect to the
x-axis. Utilizing this symmetry in Eq. (2.10), we can see that

ẏ1(x1, y1;x2, y2; t) = −ẏ1(x1,−y1;x2,−y2; t)
ẏ2(x1, y1;x2, y2; t) = −ẏ2(x1,−y1;x2,−y2; t) (2.12)

which are valid for both bosonic and fermionic particles. Relations (2.12) show
that if y1(t) = y2(t) = 0, then the speed of each particles in the y-direction is
zero. This means that none of the particles can cross the x-axis nor are they
tangent to it, provided both of them are simultaneously on this axis. There is
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the same symmetry of the velocity about the x-axis as for an ordinary double-slit
experiment [3].

If we consider y = (y1 + y2)/2 to be the vertical coordinate of the center of
mass of the two particles 2, then we can write

ẏ = (ẏ1 + ẏ2)/2

= −N h̄

2m
Im{ 1

ψ
(
y1 + y2
2σ0σt

)(ψA1ψB′
1
± ψA2ψB′

1
+ ψB1ψA′

2
± ψB2ψA′

1
)}

=
(h̄/2m0σ2

0)
2

1 + (h̄/2mσ2
0)

2t2
yt. (2.13)

Solving the equation of motion (2.13), we obtain the path of the y-coordinate
of the center of mass

y(t) = y(0)
√

1 + (h̄/2mσ2
0)

2t2. (2.14)

If it is assumed that, at t = 0 the center of mass of the two particles is exactly
on the x-axis, that is y(0) = 0, then the center of mass of the particles will
always remain on the x-axis. Thus, according to BQM, the two particles will be
detected at points symmetric with respect to the x-axis, as shown in Fig. 2.1.

It seems that calculation of quantum potential can give us another perspec-
tive of this experiment. As we know, to see the connection between the wave
and particle, the Schrödinger equation can be rewritten in the form of a gen-
eralized Hamilton-jacobi equation that has the form of the classical equation,
apart from the extra term

Q(x, t) = − h̄2

2m

∇2R(x, t)

R(x, t)
(2.15)

where the function Q has been called quantum potential. However, it can be
seen that the calculation and analysis of Q, by using our total wave function
(2.4), is not very simple. On the other hand, we can use the form of Newton’s
second law, in which the particle is subject to a quantum force (−∇Q), in
addition to the classical force (−∇V ), namely

F = −∇(Q+ V ). (2.16)

Now, if we utilize the equation of motion of the center of mass y-coordinate
(2.14) and Eq. (2.16), it is possible to obtain the quantum potential for the
center of mass motion (Qcm). Thus, we can write

− ∂Q

∂x
= mẍ = 0 (2.17)

2 Here, one may argue that this center of mass definition seems inconsistent with the pre-
vious definition introduced in the incident wave function (2.1). But, in appendix A, we have
shown that these two definitions of the center of mass coordinate are two consistent represen-
tations.
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− ∂Q

∂y
= mÿ =

my(0)(h̄/2mσ2
0)

2

(1 + (h̄t/2mσ2
0)

2)3/2
=
my4(0)

y3
(

h̄

2mσ2
0

)2 (2.18)

where the result of Eq. (2.17) is clearly due to motion of plane wave in the
x-direction. In addition, we assume that ∇V = 0 in our experiment. Thus, our
effective quantum potential is only a function of the y-variable and it has the
form

Q =
my4(0)

2y2
(

h̄

2mσ2
0

)2 =
1

2
my2(0)

(h̄/2mσ2
0)

2

1 + (h̄t/2mσ2
0)

2
. (2.19)

If it is assumed that y(0) = 0, the quantum potential for the center of mass of
the two particles is zero at all times and it remains on the x-axis. However, if
y(0) 6= 0, then the center of mass can never touch or cross the x-axis. These
conclusions are consistent with our earlier results (Eq. (2.14)).

2.4 Predictions of standard quantum mechanics

So far, we have been studying the results obtained from BQM at the individual
level. Now it is well known from SQM that the probability of simultaneous
detection of two particles at yM and yN , at the screens S1 and S2, is equal to

P12(yM , yN ) =

∫ yM+△

yM

dy1

∫ yN+△

yN

dy2|ψ(x1, y1;x2, y2; t)|2. (2.20)

The parameter ∆, which is taken to be small, is a measure of the size of the
detectors. It is clear that the probabilistic prediction of SQM is in disagree-
ment with the symmetrical prediction of BQM for the y(0) = 0 condition,
because SQM predicts that probability of asymmetrical detection, at the indi-
vidual level of a pair of particles, can be different from zero, in opposition to
BQM’s symmetrical predictions. In the other words, based on SQM’s predic-
tion, the probability of finding the two particles on one side of the x-axis can
be nonzero while we showed that BQM’s prediction forbids such events in our
scheme, and its probability is exactly zero. Thus, if necessary arrangements to
perform this experiment are provided, one can choose one of the two theories
as a more complete description of the quantum universe.

2.5 Statistical distribution of the center of mass coordinate

around the x-axis

We have assumed that the two particles are entangled so that in spite of a
position distribution for each particle, y(0) can be always considered to be on
the x-axis. However, one may argue that, it is necessary to consider a position
distribution for y(0), that is,△y(0) 6= 0 while 〈y(0)〉 = 0. Therefore, it may seem
that, not only symmetrical detection of the two particles is violated, but also
they can be found on one side of the x-axis on the screens, because the majority
of the pairs can not be simultaneously on the x-axis [26]. In this regard, Ghose
[27] believes that the two entangled bosonic particles cannot cross the symmetry
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axis even if we have the situation (y1 + y2)t=0 6= 0. However, even by accepting
Marchildon’s argument about this situation [26], this problem can be solved
if we adjust △y(0) to be very small. We assume that, to keep symmetrical
detection about the x-axis with reasonable approximation, the center of mass
dispersion in the y-direction must be smaller than the distance between any two
neighboring maxima on the screens, that is,

△y(t)≪ λD

2Y
≃ πh̄t

Y m
(2.21)

where λ is the de Broglie wavelength. By using Eq. (2.14), we can write

△y(0)≪ 2aπ√
1 + a2

σ2
0

Y
(2.22)

where a = h̄t/2mσ2
0 . Since considering a ≥ 1 condition is a reasonable assump-

tion in interferences experiments, we have

△y(0)≪ 2π
σ2

0

Y
. (2.23)

This relation shows that Y ≪ σ0 condition can be considered as a suitable
choice in our scheme. For usual condition of Y ∼ σ0, we have

△y(0)≪ 2πσ0. (2.24)

Therefore, to prevent joint detection of the two particles on the one side of the
x-axis, and also, to obtain an acceptable symmetrical joint detection around this
axis, it is enough to adjust the y dispersion of the center of mass position of the
two particles very smaller than the width of slits. In this case, we only lose our
information about the initial trajectory of bosonic particles. It is evident that,
if one considers △y(0) ∼ σ0, as was done in [26], the incompatibility between
the two theories will disappear. But because of the entanglement of the two
particles in the y-direction, it is possible to adjust y(0) independent of σ0, so
that

0 ≤ y(0) =
1

2
(y1 + y2)t=0 ≪ σ0. (2.25)

Although it is obvious that (△y1)t=0 = (△y2)t=0 ∼ σ0, but the position en-
tanglement of the two particles at the source S in the y-direction makes them
always satisfy Eq. (2.25), which is not feasible in the one-particle double-slit
devices with △y(0) ∼ σ0.

2.6 Comparison between SQM and BQM at the ensemble level

Now, one can compare the results of SQM and BQM at the ensemble level of
the particles. To do this, we consider an ensemble of pairs of particles that have
arrived at the detection screens at different times ti. It is well known that, in
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order to ensure compatibility between SQM and BQM for ensemble of particles,
Bohm added a further postulate to his three basic and consistent postulates
[1-3]. Based on this further postulate, the probability density that a particle in
the ensemble lies between x and x + dx, at time t, is given by

P (x, t) = R2(x, t). (2.26)

Thus, the joint probability of simultaneous detection for all pairs of particles of
the ensemble, arriving on the two screens at different time ti, with y(0) = 0, is

P12 = lim
N→∞

N∑

i=1

R2(y1(ti),−y1(ti), ti) ≡
∫ +∞

−∞
dy1

∫ +∞

−∞
dy2|ψ(y1, y2, t)|2 = 1

(2.27)

where every term in the sum shows only one pair arriving on the screens at the
symmetrical points about the x-axis at time ti, with the intensity of R2. If all
times ti in the sum are taken to be t, the summation on i can be converted
to an integral over all paths that cross the screens at that time. Now, one can
consider that the joint detection of two points on the two screens at time t is
not symmetrical around the x-axis, but we know that they are not detected
simultaneously. So, it is possible to consider the joint probability of detecting
two particles at two arbitrary points yM and yN as follows

P12(yM , yN , t) =

∫ yM+∆

yM

dy1

∫ yN+∆

yN

dy2|ψ(y1, y2, t)|2, (2.28)

which is similar to the prediction of SQM, but obtained in a Bohmian way.
Thus, it appears that under such conditions, the possibility of distinguishing
the two theories at the statistical level is impossible, as expected.

Here, to show equivalence of the two theories, we have assumed for simplicity
that y(0) = 0. If one consider y(0) 6= 0 or △y(0) 6= 0, the equivalence of the two
theories is maintained, as it is argued by Marchildon [26]. But, using this special
case, we show that assumption of y(0) = 0 is consistent with statistical results
of SQM, and in consequence, finding such a source may not be impossible.

2.7 Quantum equilibrium hypothesis and our proposed

experiment

In some of recent comments [28, 29, 30, 31], the quantum equilibrium hypoth-
esis (QEH) is utilized in order to show that our proposed experiment cannot
distinguish between SQM and BQM. In this section, we have presented some
explanations to show that their argument may not be right and our basic con-
clusions about this scheme are still intact.

We have seen that, when the entangled particles pass through the slits, the
transformation

ψin(x1, y1;x2, y2) −→ ψ(x1, y1;x2, y2) (2.29)
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occurs to the wave function describing the system. Now, it is interesting to
know what can happen to the entanglement when the two particles emerge
from the slits producing the Gaussian wave functions represented by Eq. (2.3).
In the other words, there is a question as to whether the position entanglement
property of the two particles is kept after this transformation. To answer this
question, one can first examine the effect of the total momentum operator on
the wave function of the system, ψ(x1, y1;x2, y2; t), which yields

(py1 + py2)ψ(x1, y1;x2, y2; t) = −ih̄( ∂

∂y1
+

∂

∂y2
)ψ(x1, y1;x2, y2; t)

= ih̄(
y1(t) + y2(t)

2σ0σt
)ψ(x1, y1;x2, y2; t)

(2.30)

where one can see that the wave function is an eigenfunction of the total momen-
tum operator. Now, if we can assume that the total momentum of the particles
remains zero at all times (an assumption about which we shall elaborate later
on), then it can be concluded that the center of mass of the two particles in
the y-direction is always located on the x-axis. In other words, a momentum
entanglement in the form p1 + p2 = 0 leads to the position entanglement in this
experiment. However, Born’s probability principle, i.e. P = |ψ|2, which is a
basic rule in SQM, shows that the probability of asymmetrical joint detection
of the two particles can be non-zero on the screens. Thus, there is no position
entanglement and consequently no momentum entanglement between the two
particles. This compels us to believe that, according to SQM, the momentum
entanglement of the two particles must be erased during their passage through
the slits, and the center of mass position has to be distributed according to |ψ|2.

In BQM, however, Born’s probability principle is not so important as a pri-
mary rule and all particles follow well-defined tracks determined by the wave
function ψ(x, t), using the guidance condition (2.7) with the unitary time devel-
opment governed by Schrödinger’s equation. However, to ensure the consistency
of statistical results of BQM with SQM, Bohm [2] added QEH, i.e. P = |ψ|2, to
his self-consistent theory just as an additional assumption. Now, let us review
the previous details, but this time in BQM frame. Based on our supposed EPR
source, there are momentum and position entanglements between the two parti-
cles before they were arrived on the slits. Then, the wave function of the emerg-
ing particles from the slits suffers a transformation represented by Eq. (2.29).
It is not necessary to know in details how this transformation acts, but what
is important is that the two double-slit screens are considered to be completely
identical. Thus, we expect that the two particles in the slits undergo the same
transformation(s), and so the momentum entanglement, i.e. p1 + p2 = 0, must
still be valid in BQM which is a deterministic theory, contrary to SQM. Then,
according to Eq. (2.30), the validity of the momentum entanglement immedi-
ately leads to the position entanglement

y(t) =
1

2
(y1(t) + y2(t)) = 0. (2.31)
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We would like to point out that this entanglement is obtained by using the
quantum wave function of the system. Therefore, this claim that the supposed
position entanglement can not be understood by using the assumed wave func-
tion for the system is not correct. By the way, if we accept that the momentum
entanglement is not kept and consequently y(0) obeys QEH, then deterministic
property of BQM, which is a main property of this theory, must be withdrawn.
However, it is well known that Bohm [2] put QEH only as a subsidiary constraint
to ensure the consistency of the motion of an ensemble of particles with SQM’s
results. Thus, although in this experiment, the center of mass position of the
two entangled particles turns out to be a constant in BQM frame, the position
of each particle is consistent with QEH so that the final interference pattern
is identical to what is predicted by SQM. Therefore, Bohm’s aim concerning
QEH is still satisfied and the deterministic property of BQM is left intact. In
addition, superluminal signals resulting from nonlocal conditions between our
distant entangled particles are precisely masked by considering QEH for the
distribution of each entangled particle.

So far, we have shown that in BQM frame, the center of mass position of
the two entangled particles can be considered to be a constant, without any
distribution. So, this property provides a way to make a discrepancy between
SQM and BQM, even for an ensemble of entangled particles. For instance,
suppose that we only consider those pairs one of which arrives at the upper
half of the right screen. Thus, BQM predicts that only detectors located on the
lower half of the left screen become ON and the other ones are always OFF. In
fact, we obtain two identical interference patterns at the upper half of the right
screen and the lower half of the left screen. Instead, SQM is either silent or
predicts a diluted interference pattern at the left screen. Therefore, concerning
the validity of the initial constraint y(0) = 0 in BQM, selecting of some pairs
to obtain a desired pattern, which is called selective detection in [21], can be
applied to evaluate the two theories, at the ensemble level of pairs.

2.8 Approaching realization of the experiment

Based on a recent work on Bohmian trajectories for photons [14], the first effort
for realization of a typical two-particle experiment was performed very recently
by Brida et al. [23, 24], using correlated photons produced in type I parametric
down conversion (PDC). In this realization a beam of a 351 nm pump laser of
0.4 W power with 1 mm in diameter is directed into a lithium iodate crystal,
where correlated pairs of photons are generated by type I PDC [32]. The two
photons are emitted at the same time (within femtoseconds, whilst correlation
time is some orders of magnitude larger) in a well-defined direction for a specific
frequency. By means of an optical condenser the produced photons, within
two correlated directions corresponding to 702 nm emission (the degenerate
emission for a 351 nm pump laser), are sent on a double slit (obtained by a
metal deposition on a thin glass by a photolithographic process) placed just
before the focus of the lens system. The two slits are separated by 100 µm and
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Fig. 2.2: The experimental apparatus. A pump laser at 351 nm generates parametric
down conversion of type I in a lithium-iodate crystal. Conjugated photons
at 702 nm are sent to a double-slit by a system of two piano-convex lenses
in a way that each photon of the pair crosses a well defined slit. The first
photodetector is placed at 1.21 m and the second one at 1.5 m from the slit.
Both the single photon detectors (D) are preceded by an interferential filter
at 702 nm (IF) and a lens (L) of 6 mm diameter and 25.4 mm focal length.
Signals from detectors are sent to a time amplitude converter and then to
the acquisition system (multi-channel analyzer and counters)[23].

have a width of 10 µm. They lay in a plane orthogonal to the incident laser
beam and are orthogonal to the table plane. Two single photon detectors are
placed at a 1.21 and a 1.5 m distance after the slits. They are preceded by an
interferential filter at 702 nm of 4 nm full width at half height and by a lens of 6
mm diameter and 25.4 mm focal length. The output signals from the detectors
are routed to a two channel counter, in order to have the number of events on
a single channel, and to a time to amplitude converter (TAC) circuit, followed
by a single channel analyzer, for selecting and counting the coincidence events.
Figure 2.2 illustrates this experimental set-up.

By scanning the diffraction pattern using the first detector and leaving the
second fixed at 55 mm from the symmetry axis, it is found that the coincidences
pattern perfectly followed SQM’s predictions, as Fig. 2.3 shows. The last ones
are given by

C(θ1, θ2) = g(θ1, θ
A
i )2g(θ2, θ

B
i )2 + g(θ2, θ

A
i )2g(θ1, θ

B
i )2

+2g(θ1, θ
A
i )g(θ2, θ

B
i )g(θ2, θ

A
i )g(θ1, θ

B
i )cos[2kY (sinθ1 − sinθ2)]

(2.32)
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Fig. 2.3: Coincidences data in the region of interest compared with SQM’s predictions.
The second detector is kept fixed at -55 mm from the x-axis. The x errors
bars represent the width of the lens before the detector [23].

in which

g(θ, θli) =
sin(kσ0(sin(θ)− sin(θli))

kσ0(sin(θ)− sin(θli))
(2.33)

where θ1 (θ2) is the diffraction angle of the photon observed by detector 1 (2),
and θli is the incidence angle of the photon on the slit l (A or B).

The next result of this experiment is that a coincidence peak is observed (see
Fig. 2.4) also when the first detector is placed inside enough the same semiplane
of the second one. The coincidences acquisition with a temporal window of 2.6 ns
is considered, and the background is evaluated shifting the delay between start
and stop of TAC of 16 ns and acquiring data for the same time of the undelayed
acquisition. When the center of the lens of the first detector is placed 17 mm
after the median symmetry axis of the two slits and the second detector is kept at
55 mm, with 35 acquisitions of 30 minutes, it is obtained 78 ± 10 coincidences
per 30 minutes after background subtraction, whilst in this situation BQM’s
prediction for coincidences is strictly zero. Furthermore, even when the two
detectors were placed in the same semiplane, the first at 44.4 mm and the
second at 117 mm from the symmetry axis, in correspondence of the second
diffraction peak, a clear coincidence signal was still observed (albeit less evident
than in the former case): in fact, after background subtraction, an average of 41
± 14 coincidences per hour with 17 acquisitions of one hour (and a clear peak
appeared on the multichannel analyzer) is obtained.
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Fig. 2.4: Observed coincidence peak (output of the multi-channel analyzer) when the
center of the lens of the first photodetector is placed 17 mm after the median
symmetry axis of the double slit in the same semiplane of the other photode-
tector, which is kept at 55 mm after the median symmetry axis. Acquisition
time lasts 17 hours. No background subtraction is done. A coincidence peak
is clearly visible for a delay between start (first photodetector) and stop (sec-
ond photodetector) of 9 ns (the delay inserted on the second line signal)[23].

Although performing of this experiment using photons, by Brida et al. [23],
shows that it is feasible to realize the proposed thought experiment, however,
their work does not satisfy all of our necessary conditions to enter into the
region in which BQM’s prediction is different from SQM’s. For instance, in
sec. 1.5, we have shown that the constraint △y ≪ λD/2Y is necessary to keep
the symmetrical detection of the two particles in BQM frame of nonrelativistic
domain. So, by considering h̄t/2mσ2

0 ≥ 1, one obtains △y(0)≪ 2πσ2
0/Y . This

roughly means that in the considered experimental set-up, with σ0 = 5µm and
Y = 50µm, we also should adjust △y(0) ≪ 1µm to observe a clear difference
between the standard and Bohmian predictions. But in [23], the applied △y(0)
in the laser beam is as much as 1 mm [33]. Therefore, it seems that we still need
more elaborate efforts to complete the realization of this thought experiment.

2.9 Conclusions

In conclusion, we have suggested a two-particle system which can be adjusted
to yield only symmetrical detections for the two entangled particles in BQM
frame whilst according to SQM the probability for asymmetrical detections is
not zero. The main reason for the existence of the mentioned differences between
SQM and BQM in this thought experiment is that, in BQM as a deterministic
theory, the position and momentum entanglements are kept at the slits, while
in SQM, due to its probabilistic interpretation, we must inevitably accept that
the entanglements of the two particles are erased when the two particles pass
through the slits. Incidentally, the saved position entanglement in BQM, i.e.
y(0) = 0, which is a result of the deterministic property of the thoery is not
inconsistent with QEH, because we are still able to reproduce SQM’s prediction
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for an ensemble of such particles, just as QEH requires. Therefore, our proposed
experiment is a suitable candidate to distinguish between the standard and
Bohmian quantum mechanics.



3. STUDY ON DOUBLE-SLIT DEVICE WITH TWO

CORRELATED PARTICLES

3.1 Introduction

The statistical interpretation of the wave function of the standard quantum
mechanics (SQM) is consistent with all performed experiments. An interference
pattern on a screen is built up by a series of apparently random events, and
the wave function correctly predicts where the particle is most likely to land in
an ensemble of trials. One may, however, take the view that the characteristic
distribution of spots on a screen which builds up an interference pattern is an
evidence for the fact that the wave function has a more potent physical role.
If one attempts to understand the experimental results as the outcome of a
causally connected series of individual process, then one is free to inquire about
further significance of the wave function and to introduce other concepts in
addition to it. Bohm [2], in 1952, showed that an individual physical system
comprises a wave propagating in space-time together with a point particle which
moves continuously under the guidance of the wave [1-3]. He applied his theory
to a range of examples drawn from non-relativistic quantum mechanics and
speculated on the possible alternations in the particle and field laws of motion
such that the predictions of the modified theory continue to agree with those of
SQM where this is tested, but it could disagree in as yet unexplored domains
[3]. For instance, when Bohm presented his theory in 1952, experiments could
be done with an almost continuous beam of particles. Thus, it was impossible
to discriminate between the standard and the Bohmian quantum mechanics
(BQM) at the individual levels. In fact, the two theories can be discriminated
at this level, because SQM is a probabilistic theory while BQM is a precisely
defined and deterministic theory.

In this chapter, we have studied entangled and disentangled wave functions
that can be imputed to a two-particle interference device, using a Gaussian
wave function as a real representation. Then, SQM and BQM predictions are
compared at both the individual and the statistical levels 1[29-30].

1 The individual level refers to our experiment with pairs of particles which are emitted in
clearly separated short intervals of time, and by statistical level we mean our final interference
pattern.
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3.2 Description of the two-particle experiment

Consider the famous double-slit experiment. In the two-dimensional coordinate
system, the centers of the two slits are located at (0,±Y ). Instead of the usual
one-particle emitting source, consider a special source S1, so that a pair of
identical non-relativistic particles originate simultaneously from it. We assume
that, the intensity of the beam is so low that at a time we have only a single pair
of particles passing through the slits and the detection screen S2 registers only
those pairs of particles that reach it simultaneously, and so the interference
effects of single particles will be eliminated. For mathematical simplicity, we
avoid slits with sharp edges which produce the mathematical complexity of
Fresnel diffraction, i.e., we assume that the slits have soft edges, so that the
Gaussian wave packets are produced along the y-direction, and that the plane
wave along the x-axis remain unchanged [3]. We take the time of the formation
of the Gaussian wave to be t = 0. Then, the emerging wave packets from the
slits A and B are respectively

ψA(x, y) = (2πσ2
0)−1/4e−(y−Y )2/4σ2

0ei[kxx+ky(y−Y )]

ψB(x, y) = (2πσ2
0)−1/4e−(y+Y )2/4σ2

0ei[kxx−ky(y+Y )] (3.1)

where σ0 is the half-width of each slit. Moreover at time t we can write

ψA(x, y, t) = (2πσ2
t )

−1/4e−(y−Y−h̄kyt/m)2/4σ0σtei[kxx+ky(y−Y )−Et/h̄]

ψB(x, y, t) = (2πσ2
t )

−1/4e−(y+Y+h̄kyt/m)2/4σ0σtei[kxx−ky(y+Y )−Et/h̄]

(3.2)

where

σt = σ0(1 +
ih̄t

2mσ2
0

). (3.3)

Concerning the two-particle source, in general, we can have two alternatives:
1. The wave function describing the system (the two emitted particles+double
slit screen) is so entangled that if one particle passes through the upper (lower)
slit, the other particle must go through lower (upper) slit. In other words, the
total momentum and the center of mass of the two particles in the y-direction
is considered zero at the source.
2. The wave function describing the system is not entangled. In other words,
the emission of each particle is done freely and the two particles can be consid-
ered independently. However, as a key point, the two correlated particles are
still emitted simultaneously.

In the following, we shall study each one of the two alternatives, separately,
and explain SQM’s predictions. Then, Bohmian predictions have been compared
with those of SQM.
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3.3 Entangled wave function

We take the wave incident on the double-slit screen to be a plane wave of the
form

ψin(x1, y1;x2, y2; t) = χ(x1, x2)h̄

∫ +∞

−∞
exp[iky(y1 − y2)]dkye−iEt/h̄

= 2πh̄χ(x1, x2)δ(y1 − y2)e−iEt/h̄ (3.4)

where χ(x1, x2) is the x-component of the wave function and E = E1 + E2 =
h̄2(k2

x + k2
y)/m is the total energy of the system of the two identical particles.

The parameter m is the mass of each particle and ki is the wave number of
particle in i-direction.

For this two-particle system, the total wave function after passing the two
particles through the slits can be written as

ψ(x1, y1;x2, y2; t) = N [ψA(x1, y1, t)ψB(x2, y2, t)± ψA(x2, y2, t)ψB(x1, y1, t)]

(3.5)

where N is a normalization constant which its value is not important here.
Moreover, we consider that ψA and ψB are the Gaussian wave function intro-
duced in Eq. (3.2). Also note that, the upper and lower signs in the total
entangled wave function (3.5) are due to symmetric and anti-symmetric wave
function under the exchange of particles 1 and 2, corresponding to bosonic and
fermionic property, respectively.

3.4 Disentangled wave function

In this case, the incident plane wave can be considered to be

ψ̃in(x1, y1;x2, y2; t) = aei[kx(x1+x2)+ky(y1+y2)]e−iEt/h̄ (3.6)

where a is a constant. Now, for such a two-particle system, the total wave
function after passing the two particles through the slits at time t can be written
as

ψ̃(x1, y1;x2, y2; t) =

Ñ [ψA(x1, y1, t)ψB(x2, y2, t) + ψA(x2, y2, t)ψB(x1, y1, t)
+ψA(x1, y1, t)ψA(x2, y2, t) + ψB(x1, y1, t)ψB(x2, y2, t)]

= Ñ [ψA(x1, y1, t) + ψB(x1, y1, t)][ψA(x2, y2, t) + ψB(x2, y2, t)] (3.7)

where Ñ is another normalization constant and ψA as well as ψB can be con-
sidered the Gaussian wave function represented in Eq. (3.2).

3.5 Standard quantum mechanics predictions

Based on SQM, the wave function can be associated with an individual phys-
ical system. It provides the most complete description of the system that is,
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in principle, possible. The nature of description is statistical, and concerns
the probabilities of the outcomes of all conceivable measurements that may be
performed on the system. It is well known from SQM that, the probability of
simultaneous detection of the particles at yM and yN , on the screen S2, located
at x1 = x2 = D and t = Dm/h̄kx, is equal to

P12(yM , yN , t) =

∫ yM+△

yM

dy1

∫ yN+△

yN

dy2|ψ(x1, y1;x2, y2; t)|2. (3.8)

The parameter ∆, which is taken to be small, is a measure of the size of the
detectors. We shall compare this prediction of SQM with that of BQM.

3.6 Bohmian predictions for the entangled case

Consider the entangled wave function (3.5). By substituting it in the guidance
condition (2.7), one can obtain

ẏ1 = N h̄
m Im{ 1

ψ
[[−2(y1 − Y − h̄kyt/m)/4σ0σt + iky]ψA1ψB2

± [−2(y1 + Y + h̄kyt/m)/4σ0σt − iky]ψA2ψB1 ]}

ẏ2 = N h̄
m Im{ 1

ψ
[[−2(y2 + Y + h̄kyt/m)/4σ0σt − iky]ψA1ψB2

± [−2(y2 − Y − h̄kyt/m)/4σ0σt + iky]ψA2ψB1 ]}. (3.9)

On the other hand, from Eq. (3.2) one can see that,

ψA(x1, y1, t) = ψB(x1,−y1, t)
ψA(x2, y2, t) = ψB(x2,−y2, t) (3.10)

which indicate the reflection symmetry of ψ(x1, y1;x2, y2; t) with respect to the
x-axis. Using this symmetry in Eq. (3.9), we have

ẏ1(x1, y1;x2, y2; t) = ∓ẏ1(x1,−y1;x2,−y2; t)
ẏ2(x1, y1;x2, y2; t) = ∓ẏ2(x1,−y1;x2,−y2; t). (3.11)

These relations show that if y1(t) = y2(t) = 0, i.e., two particles are on the x-
axis, simultaneously, then the speed of each bosonic particles in the y-direction
is zero along the symmetry axis x, but we have no such constraint on fermionic
particles, as was also mentioned by Ghose [13]. However, in the previous chapter,
we have shown that, there is such a constraint on both bosonic and fermionic
particles, using the two entangled particles in a two double-slit device.

If we consider y = (y1 + y2)/2 to be the vertical coordinate of the center of
mass of the two particles, then we can write

ẏ = (ẏ1 + ẏ2)/2

= N
h̄

2m
Im{ 1

ψ
(−y1 + y2

2σ0σt
)(ψA1ψB2 ± ψA2ψB1)}
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t = 0 S2

S1
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B

D

x

y

2σ2σ00

Y

yM

yN

A

Fig. 3.1: A two-slit scheme in which two identical entangled particles are emitted from
the source S1. Then, they pass through the slits A and B, and finally they are
detected on the screen S2, simultaneously. We have assumed that, y(0) = 0,
or 〈y(0)〉 = 0 under △y(0) ≪ σ0 and h̄t/2mσ2

0 ∼ 1 conditions. It is clear
that dashed lines are not real trajectories.

=
(h̄/2mσ2

0)
2

1 + (h̄/2mσ2
0)

2t2
yt. (3.12)

Solving this differential equation, we get the path of the y-coordinate of the
center of mass

y(t) = y(0)
√

1 + (h̄/2mσ2
0)

2t2. (3.13)

Using Eq. (3.13) and doing the same as what was done in chapter 1, one obtains
the quantum potential for the center of mass motion

Qcm =
my4(0)

2y2
(

h̄

2mσ2
0

)2 =
1

2
my2(0)

(h̄/2mσ2
0)

2

1 + (h̄t/2mσ2
0)

2
. (3.14)

If the center of mass of the two particles is exactly on the x-axis at t = 0 , then
y(0) = 0, and the center of mass of the particles will always remain on the x-axis.
In addition, the quantum potential for the center of mass of the two particles
is zero at all times. Thus, we have y1(t) = −y2(t) and the two particles, in
both the bosonic and fermionic case, will be detected at points symmetric with
respect to the x-axis, as is shown in Fig. 3.1. This differs from the prediction of
SQM, as the probability relation (3.8) shows. SQM predicts that the probability
of asymmetrical detection of the pair of particles can be different from zero in
contrast to BQM’s symmetrical prediction. Furthermore, according to SQM’s
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prediction, the probability of finding two particles at one side of the x-axis can be
non-zero while it is shown that BQM forbids such events, provided that y(0) = 0.
Figure 3.1 shows one of the typical inconsistencies which can be considered at
the individual level. Based on BQM, bosonic and fermionic particles have the
same results, but, we know that if one bosonic particle passes through the upper
(lower) slit, it must detected on the upper (lower) side on the S2 screen, due
to relations (3.11). Instead, there is no such constraint on fermionic particles.
If y(0) 6= 0 and we have a distributed source with 〈y(0)〉 = 0, then for the
conditions h̄t/2mσ2

0 ∼ 1 and Y ∼ σ0, it is easy to show that the constraint
△y(0)≪ σ0 still yields reasonable symmetrical detection around the x-axis on
the screen. But, now, in addition to the fermionic particles, the bosonic ones
can cross the symmetry axis.

3.7 Bohmian predictions for the disentangled case

By considering the disentangled wave function (3.7) and the guidance condition
(2.7), Bohmian velocities of particle 1 and 2 can be obtained as

ẏ1 = Ñ
h̄

m
Im{ 1

(ψA1 + ψB1)
([
−2(y1 − Y − h̄kyt/m)

4σ0σt
+ iky]ψA1

+ [
−2(y1 + Y + h̄kyt/m)

4σ0σt
− iky]ψB1}

ẏ2 = Ñ
h̄

m
Im{ 1

(ψA2 + ψB2)
([
−2(y2 − Y − h̄kyt/m)

4σ0σt
+ iky]ψA2

+ [
−2(y2 + Y + h̄kyt/m)

4σ0σt
− iky]ψB2}. (3.15)

Thus, as expected, the speed of each particle is independent of the other. Using
relations (3.15) as well as Eq. (3.10), we obtain

ẏ1(x1, y1, t) = −ẏ1(x1,−y1, t)
ẏ2(x2, y2, t) = −ẏ2(x2,−y2, t). (3.16)

This implies that the y-component of the velocity of each particle would vanish
on the x-axis. Although these relations are similar to the relations that were ob-
tained for the entangled wave function, but here we have an advantage: none of
the particles can cross the x-axis nor are tangent to it, independent of the other
particle’s position. This property can be used to show that BQM’s predictions
are incompatible with SQM’s.

To see this incompatibility, we use a special detection process on the screen
S2 that we call it selective detection. In this selective detection, we register
only those pair of particles which are detected on the two sides of the x-axis,
simultaneously. That is, we eliminate the cases of detecting only one particle or
detecting both particles of the pair on the upper or lower part of the x-axis on
the screen. Again, it is useful to obtain the equation of motion of the center of



3. Study on double-slit device with two correlated particles 35

t = 0 S2

S1

A

B

D

x

y

yM

A

2σ2σ00

8

∼ σ∼ σ00

∼ σ∼ σ 0

>> σ>> σ00y1

yN

Fig. 3.2: Schematic drawing of a two-slit device in which two identical disentangled
particles are simultaneously emitted by the source S1. The symmetrical
detection is not predicted at the central maximum, using both SQM and
BQM. But, using BQM, we can have symmetrical detection at the other
maxima (for example, at y1 as the first acceptable maximum) under the
condition Y ≪ 2πσ0.

mass in the y-direction. Using Eq. (3.15), one can show that,

ẏ =
(h̄/2mσ2

0)
2yt

1 + (h̄/2mσ2
0)

2t2
+ Ñ

h̄

2m
Im{ 1

ψ
(
Y + h̄kyt/m

σ0σt
+ 2iky)(ψA1ψA2 − ψB1ψB2)}.

(3.17)

We can assume that the distance between the source and the two-slit screen
is so large that we have ky ≃ 0. Then, using the special case Y ≪ σ0, the
second term in Eq. (3.17) becomes negligible and the equation of motion for the
y-coordinate of the center of mass is reduced to

ẏ ≃ (h̄/2mσ2
0)

2

1 + (h̄/2mσ2
0)

2t2
yt (3.18)
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and similar to the entangled case, we have

y(t) ≃ y(0)
√

1 + (h̄/2mσ2
0)

2t2. (3.19)

Since for this special source there was not any entanglement between the two
particles, we must have △y(0) ∼ σ0, according to quantum equilibrium hypoth-
esis (QEH). Now, consider the case in which 〈y(0)〉 = 0. To obtain symmetrical
detection with reasonable approximation it is enough to assume that the cen-
ter of mass variation is smaller than the distance between any two neighboring
maxima on the screen. Then, according to Eq. (2.21), one can write

△y(0)≪ πh̄t

Y m
(3.20)

which yields
Y ≪ 2πσ0 (3.21)

where in Eq. (3.20) we consider h̄t/2mσ2
0 ∼ 1 so that y(t) ∼ y(0). Therefore,

under these conditions, BQM’s symmetrical prediction is incompatible with
SQM’s asymmetrical one. Figure 3.2 shows a schematic drawing of BQM’s
symmetrical detection occurred at a maximum for the conditions Y ≪ 2πσ0

and h̄t/2mσ2
0 ∼ 1. It should be noted that, under these conditions, the two

wave packets are overlapped on the screen in an interval of the order of σ0.
In this interval neither BQM nor SQM predict symmetrical detection around
the x-axis. In fact, the symmetrical detection predicted by BQM happens far
(relative to σ0) from the x-axis on the screen. In other words, save the central
peak, which does not show symmetry with respect to the x-axis, other less
prominent maxima of the diffraction pattern appear at the locations

yn+ ≃ n+
πh̄t

2mσ0
±△y

yn− ≃ −n−
πh̄t

2mσ0
±△y (3.22)

where yn± refer to y-component of the maxima above or below the x-axis on
the screen, respectively. In addition, n± represent positive integers. BQM’s
symmetrical prediction puts the following constraint:

n+ = n− (3.23)

for great n’s. However, SQM’s probabilistic prediction does not require this
constraint.

Now, consider conditions in which 〈y(0)〉 6= 0, △y(0) ∼ σ0, and h̄t/2mσ2
0 ≫

1. Then, the x-axis will not be an axis of symmetry and we have a new region on
the S2 screen around which all pairs of particles will be detected symmetrically.
Thus, using Eqs. (3.16) and (3.19) as well as selective detection for the two
particles, which requires registration of those two particles that are detected at
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Fig. 3.3: Schematic drawing of a two-disentangled particle applied in a two-slit device
in which the conditions Y ≪ σ0 ≪ 〈y(0)〉 and h̄t/2mσ2

0 ≫ 1 along with
a special selective detection are considered. The length L shows the low
intensity interval in the final interference pattern.

the two sides of the x-axis simultaneously and omission of the others, BQM can
predict a rather empty interval with low intensity of particles that has a length

L ≃ 2〈y〉 ≃ h̄t

mσ2
0

〈y(0)〉 (3.24)

if the constraint △y ≪ L is satisfied. The last constraint at h̄t/2mσ2
0 ≫ 1

condition, corresponds to △y(0) ≪ 〈y(0)〉. Figure 3.3 shows that according to
BQM and under the conditions

h̄t

2mσ2
0

≫ 1

Y ≪ σ0 ≪ 〈y(0)〉 (3.25)

a considerable position change in the y-coordinate of the source produces a
region with very low intensity on the screen which is not predicted by SQM. In
fact, based on SQM, we have two alternatives:
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1. The joint probability relation (3.8) is still valid and there is only a reduction
in the intensity throughout the screen S2, due to the selective detection.
2. SQM is silent about our selective detection.
In the first case, there is a disagreement between the predictions of SQM and
BQM and in the second case, BQM has a better predictive power than SQM,
even at the statistical level.

However, since the two particles in this scheme are emitted in a disentangled
state, the results obtained may seem unbelievable. In this regard, Struyve [37]
based on our aforementioned factorizable wave function (3.7), believes that the
two independent particles of this experiment cannot produce different predic-
tions for SQM and BQM. He argues that [37], the results of the experiment
will not be altered if we emit the two particles simultaneously or emit only one
particle at a time, because the two particles are totally independent. But, it
should be noted that, we can use the selective detection only when the source
emits two identical particles at the same time, and if the source emits just one
particle at each time, then it is meaningless to utilize our selective detection.
In the following, once again, we substantiate our previous arguments about this
thought experiment, in some details.

At first, we examine the applied condition Y ≪ σ0, in a double-slit device
with two disentangled particles. One may argue that this condition is meaning-
less, because based on the specifications of the set-up, Y represents the distance
between the center of each slit to the x-axis, and therefore, the minimum value
of Y approaches 1

2ǫ+ σ0, where ǫ is considered to be very small and represents
the length of the plane that separates the two slits. But, this objection can be
answered by considering the overlapping of each particle’s two Gaussian wave
functions which are generated at the two near slits. The overlap causes the peak
of each Gaussian wave to approach more and more to the x-axis. In addition,
under this condition, the Gaussian wave functions lose their symmetrical form
at each slit. Our argument becomes clearer when we consider ǫ = 0 as a limit-
ing case, i.e, we have only one slit. In this limiting case, it is clear that Y = 0.
Therefore, when the two slits are very near together, the peak of Gaussian wave
functions, i.e. Y , come very near to the x-axis and the condition Y ≪ σ0 is
completely satisfied.

Another problem can arise when one thinks of the two independent parti-
cles. To handle this problem, let us reconsider the second term in Eq. (3.17),
particularly the coefficient (ψA1ψA2 − ψB1ψB2). Using the Gaussian wave (3.2)
and the condition ky ≃ 0, the latter coefficient can be written in the form

ψA1ψA2 − ψB1ψB2 = (2πσt)
−1/4e2i(kxx−Et/h̄)e−(y2

1+y2
2)/4σ0σte−(Y+uyt)

2/2σ0σt

×[e(y1+y2)(Y+uyt)/2σ0σt − e−(y1+y2)(Y+uyt)/2σ0σt ]

(3.26)

where uy = h̄ky/m. If we require that y1(t) + y2(t) = 0, i.e., the y-component
of the two particles are entangled, then we would obtain the equation of motion
(3.13), as expected. But our two particles in this scheme are initially disentan-
gled, and it is not necessary to have y1(t) + y2(t) = 0. Instead, we can have
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another choice on the geometry of the two-slit set-up. In fact, if we apply the
condition Y ≪ σ0, again the behavior of the equation of motion of the two par-
ticles in the y-direction is similar to the motion of the two entangled particles,
while the two particles were disentangled. Hence, we can state that the classical
interaction of the wave function of the two disentangled particles with the two-
slit plane barrier for the condition Y ≪ σ0, results in a wave function which
now guides the y-component of the center of mass of the two apparently disen-
tangled particles in the same way as the case of two entangled particles with the
initial condition −σ0 ≤ (y1 + y2)t=0 ≤ σ0, for those pairs of particles that pass
through the two slits. Thus, we have shown that the results obtained in the two-
slit device, using two synchronized identical particles along with the selective
detection, are completely different from the ones obtained in a single-particle
double-slit experiment. In fact, it seems that the motion of either particle is
now dependent on its own location and the location of the other particle, al-
though the apparent form of the wave function of the system can be efficiently
represented by the use of the disentangled form in (3.7). Based on QEH, the
factorizable wave function (3.7) results that both SQM and BQM must yield the
same interference pattern for the whole particle arrived on the screen. But, one
can see that this is not true for our specified conditions in which we have used a
selective detection. If we study the interference pattern without using selective
detection, we must obtain the same results for the two theories. However, using
selective detection along with the guidance condition, it is clear that not only
the two theories do not have the same statistical predictions, but also BQM
clarifies and illuminates SQM, as Dürr et al. [38] said:“by selectively forgetting
results we can dramatically alter the statistics of those that we have not for-
gotten. This is a striking illustration of the way in which Bohmian mechanics
does not merely agree with the quantum formalism, but, eliminating ambigui-
ties, clarifies, and sharpens it.”. In our selective detection, we have forgotten
detected single-particle and the two-particle contributions on the one side of the
x-axis (of the screen S2).

3.8 Conclusions

In this chapter, we have studied two nearly similar thought experiments which
can give different results for the standard and Bohmian quantum mechanics
in some particular conditions. The suggested experiments consist of a two-slit
interferometer with a special source which emits two identical non-relativistic
particles, simultaneously. We have shown that, according to the characteristic
of the source, our two-particle system can be described by two kinds of wave
functions: the entangled and the disentangled wave functions. For the entan-
gled case, we have obtained some disagreement between SQM and BQM at the
individual level while the two theories predict the same statistical results, as
expected. For the disentangled case, the predictions of the two theories can
be different at the individual level, too. Again, the results of the two theories
were the same at the ensemble level. However, the use of selective detection
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can dramatically alter the interference pattern, so that not only the statistical
results of BQM do not agree with those of SQM, but BQM may also increase
our predictive power. Therefore, our suggested thought experiments provide
examples for which the standard and Bohmian quantum mechanics may yield
different predictions.
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4. INTRODUCTION-QUANTUM INFORMATION THEORY

4.1 Introduction

In 1982 Feynman [39] observed that certain quantum mechanical effects cannot
be simulated efficiently on a classical computer. This observation led to spec-
ulation that perhaps computation in general can be done more efficiently if it
uses these quantum effects. But building quantum computers proved tricky, and
as no one was sure how to use the quantum effects to speed up computation,
the field developed slowly. It was not until 1994, when Shor [40, 41] surprised
the world by describing a polynomial time quantum algorithm for factoring
integers, that the field of quantum computing came into its own. This discov-
ery prompted a flurry of activity, both among experimentalists trying to build
quantum computers and theoreticians trying to find other quantum algorithms.
Additional interest in the subject has been created by the invention of quantum
dense coding [42], quantum teleportation [43] and quantum key distribution [44]
as well as, more recently, popular press [45, 46] accounts of experimental suc-
cesses in quantum teleportation and the demonstration of a three-bit quantum
computer.

The concept of entanglement is the distinctive and responsible feature that
allows quantum information to overcome some of the limitations posed by clas-
sical information, as exemplified by the new phenomena of teleportation, dense
coding and key distribution which are explained in the following sections. In
fact, entanglement leads to profound experimental consequences like non-local
correlations: when two distantly apart parties Alice and Bob share, say, an EPR
pair, the measurement by Alice on her state simultaneously determines the state
on the Bob side. Apparently, this implies instant information transmission, in
sharp contrast to Einstein’s relativity. However, to reconcile both facts we must
notice that the only way Bob has to know about his state (without measuring
it) is by receiving a classical communication from Alice, which does propagate
no faster than the speed of light.

4.2 Quantum dense coding

Classical information can also be sent through quantum channels: to transmit
the word 10011, it is enough that Alice prepares 5 qubits in the states |1〉,
|0〉, |0〉, |1〉, |1〉, sends them to Bob through the quantum channel, and Bob
measures each of them in the basis |0〉, |1〉. Each qubit carries a cbit, and this is
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the most it can do in isolation. But, as theoretically proposed by Bennett and
Wiesner [42], if Alice and Bob share beforehand an entangled state, then 2 cbits
of information can be sent from Alice to Bob with a single qubit. As a matter
of fact, entanglement is a computing resource that allows more efficient ways of
coding information. Assume, for instance, an entangled state of two photons.
One of the photons goes to Alice, the other one to Bob. She performs one of
the following operations on the polarization of her arriving photon: identity,
flipping, change of π in the relative phase, and the product of the last two.
Once this is done, she sends back the photon to Bob, who measures in which of
the four Bell states the photon pair is. Then, in this fashion we have been able
to send 2 bits of information over one single particle with only 2 states, that
is, by means of a qubit. It doubles what can be accomplished classically which
results the name of quantum dense coding or super dense coding. Moreover, if
Eve, as an eavesdropper, intercepts the qubit, she cannot get from it alone any
information. Because, all the information lies in the entangled state, and Bob
possesses half of the pair. Actually, Alice has sent Bob 2 qubits, but the first
one long ago, as part of the initial entangled state. This fact has allowed them
to communicate more efficiently, resorting to the entangled state they shared.
Dense coding is kind of the inverse process to teleportation. In the latter the
communication of two cbits allows us to reproduce a qubit state, while in the
former the communication of a qubit carries along two cbits of information.

The following is a review of the dense coding protocol which is explained in
[47]. Consider an EPR source which supplies Alice and Bob with a two-particle
state like

|ψ〉 = 1√
2
(|00〉+ |11〉) (4.1)

one of whose particles goes to Alice and the other one to Bob, who keep them.
Alice is supplied with 2 cbits, which represent the numbers 0, 1, 2, 3 as 00, 01,
10, 11.
Step 1. Coding: According to the value of that number, Alice effects on her
EPR half the unitary operation I,X,Z,Y, which brings the EPR state to 00+11,
10+01, 00-11, 10-01. Once this is done, she sends her half to Bob.
Step 2. Decoding: Upon reception, Bob effects on the EPR pair first a CNOT
operation, such that the state becomes 00+10, 11+01, 00-10, 11-01. He then
measures the second qubit; if Bob finds 0, he already knows that the message
was 0 or 2, and if he finds 1, the message was 1 or 3. That is, he has gotten
the second bit of the two-bit message. In order to know the first one, Bob next
applies a Hadamard transformation on the first qubit, thereby the state becomes
00, 01, 10, -11, and after measuring the first bit, if he finds 0, he knows that the
message was 0 or 1, and if he finds 1, the message was 2 or 3, that is, he has
just gotten the second bit of the message.
An experiment of this nature has been performed in Innsbruck [48], by using
the polarized-entangled photons of type II parametric down conversion that a
non-linear crystal of β-barium borate produces: UV photons get disintegrated
(though with low probability) in a pair of softer photons, with polarizations
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which in a certain geometric configuration are entangled. In that experiment,
they managed to send log23 = 1.58 cbits per qubit. In a recent experiment
[49], in which the qubits are the spins of 1H and 13C in a clorophorm molecule
13CHCl3 marked with 13C, and RMN techniques are employed to initialize,
manipulate and read out the spins, the authors claim to have reached the 2
cbits per qubit.

The initial preparation of the entangled pair and the posterior transmission
of the information qubit may have opposite senses; for example, Bob sends to
Alice one half of the entangled state, keeping the other half for himself, and
then Alice uses her qubit to send to Bob the desired information. This may
be of interest if the cost in the transmission in one way is higher than in the
reverse way. On the other hand, intercepting the message from Alice to Bob
does not provide any information to Eve, because the message is entangled with
the part of the EPR pair possessed by Bob. Therefore it is automatically a
secure emission of information (except if Eve intercepts both the original pair
and the message and she replaces them).

4.3 Quantum teleportation

Copying classical states has never posed unsurmountable difficulties to experts.
It suffices to thoroughfully observe the original as much as it may be required,
avoiding to damage it, to retrieve the information needed to make a copy of it.
This careful observation does not alter, in a noticeable way, its state. But if the
original to be reproduced is a quantum system in an unknown state ψ, then any
measurement (incompatible with Pψ) made on the system to get information
on ψ will disturb, uncontrollably, the state destroying the original. Moreover,
even in the case of having an unlimited number of copies of that state, infinitely
many measurements will be necessary to determine that unknown state.

For example, assume that Alice has one spin- 1
2 ) particle as a qubit in a pure

state. Bob needs it, but Alice does not have any quantum channel to transmit it
to him. If Alice knows the precise state of her qubit (for example, if she knows
that her spin- 1

2 is oriented in the direction n), it is enough for her to give Bob in
a letter (classical channel) that information (the components of n) to enable him
preparing a qubit exactly equal to Alice’s. But if she happens not to know the
state, she may choose to confess it to Bob, who would then be inevitably driven
to prepare his qubit in a random way, obtaining a 50% fidelity on average. But
Alice can also try to be more cooperative, making for example a measurement
on her qubit of n′ · σ, with n′ arbitrarily chosen, and then transmitting to Bob
both the components of n′ and the result ǫ = ±1 thus obtained. Armed with
this information, Bob can prepare his qubit in the state

1

2
(I + ǫn′ · σ). (4.2)

The average fidelity so obtained is larger than before: 2/3. However, it is not
still enough.
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If Alice and Bob share an EPR pair, there exists a protocol known as quan-
tum teleportation, devised by Bennett et al. [43] in 1993, which resorts to the
quantum entanglement of states, and the non-locality of quantum mechanics
allows Bob to reproduce Alice’s unknown quantum state with the assistance of
only 2 cbits of information sent by Alice to Bob through a classical channel.
This procedure necessarily destroys Alice’s state (otherwise it would violate the
quantum no-cloning theorem). The following is a description of the teleporta-
tion scheme as explained in [47].

Assume that Alice likes to teleport a qubit with the following quantum state

|φ〉 = α|0〉+ β|1〉 (4.3)

in which

α = cos
1

2
θ, β = eiφsin

1

2
θ. (4.4)

In addition, consider

|ψ〉 = 1√
2
(|00〉+ |11〉) (4.5)

be the EPR state shared between Alice and Bob, with Alice having the first of
its qubits, and Bob the second. The initial state is thus |φ〉⊗|ψ〉, of which Alice
can locally manipulate its two first bits and Bob the third one.
Step 1. Alice applies to the initial state the unitary operator

U = ((H ⊗ I)CNOT)⊗ I (4.6)

acting with the CNOT gate on the first two qubits and next with the Hadamard
unitary gate H on the first one. The resulting state is

1

2
(|00〉 ⊗ |φ〉+ |01〉 ⊗X |φ〉+ |10〉 ⊗ Z|φ〉+ |11〉 ⊗ Y |φ〉). (4.7)

Step 2. Alice then measures the first two qubits, obtaining |00〉, |01〉, |10〉, or
|11〉 equiprobably.1

Alice lets Bob know the result thus obtained, sending him two cbits: the pair
of binary digits 00, 01, 10, 11 that characterizes it. As a byproduct of Alice’s
measurement, the first bit ceases to be in the original state |φ〉, while the third
qubit gets projected onto |φ〉, X |φ〉, Z|φ〉, Y |φ〉, respectively.

1 Steps 1+2 amount to performing a Bell measurement on the initial state, thus correlating
the Bell states 00± 11, 01± 10 of Alice’s two qubits with the states of Bob’s qubit. It suffices
to note that

|φ〉|ψ〉 = 1
√

2
|φ〉(|00〉 + |11〉) = 1

2
√

2
((|00〉 + |11〉)|φ〉 +

(|01〉 + |10〉)X|φ〉 + (|00〉 − |11〉)Z|φ〉 + (|01〉 − |10〉)Y |φ〉).
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Step 3. Once Bob receives the classical information sent by Alice, he just needs
to apply on his qubit the corresponding gate I, X,Z, Y , in order to drive it to
the desired state |φ〉.

Notice that this teleportation sends an unknown quantum state from one
place (where it vanishes) to another place (where it shows up) without really
traversing the intermediate space. It does not violates causality, though. In
the first part of the process, quantum correlations get established between the
Bell states obtained by Alice and the associated states of Bob’s qubit. In the
remaining part to conclude the teleportation, information is transmitted by
classical means, in the standard non-superluminal fashion. Notice also that in
this “noncorporeal” process, it is the information about the quantum state, the
qubit, and not the physical state itself, what gets passed from Alice to Bob.
There has been no transportation whatsoever of matter, energy or information
at a speed larger than the speed of light.

It is nevertheless surprising in the quantum teleportation that all the infor-
mation needed to reproduce the state |φ〉 = (cos 1

2θ)|0〉+eiφ(sin 1
2θ)|1〉 (informa-

tion that is infinite for it requires to fix a point (θ, φ) on the Bloch sphere with
infinite precision, thus requiring infinitely many qubits), can be accomplished
with only 2 cbits, provided an EPR state is shared. This state, by itself, only
generates potentially an infinite number of random and correlated bit pairs.

Quantum teleportation was realized experimentally with photons for the
first time in two laboratories [50, 51]. This is at least what these authors claim,
although several criticisms have been raised [48-50] (see however [55, 56]). In
the experiment by the Roma group [51], the initial state to be teleported from
Alice to Bob was a photon polarization, but not an arbitrary one, because it
coincided with that of the Alice’s photon in the shared EPR photon pair. In
the experiment by the Innsbruck group [50], however, the teleported state was
arbitrary. Teleportation was reached with a high fidelity of 0.80 ± 0.05,2 but
with a reduced efficiency (a 25% of cases). Teleportation has also been realized
for states which are parts of entangled states [57].

It is also worthwhile to mention that quantum teleportation of states of
infinite dimensional systems, namely, the teleportation of coherent optical states
leaning on pairs of EPR squeezed states, which is theoretically proposed by
Braunstein ana Kimble [58], is realized experimentally by Furasawa et al. [59].
In this experiment, whose fidelity is 0.58 ± 0.02 (higher than the maximum 1

2
expected without resorting to entanglement), a third party, the verifier Victor,
supplies Alice with one state that is known to him, but not to her. After
teleporting that state from Alice to Bob, Victor verifies on the output if Bob’s
state is similar to the one he provided to Alice. In this sense, this experiment
is different from all the others, and led the authors to claim priority in the
realization of teleportation.

It does not seem to be easy to implement the theoretical protocol with a
100% effectiveness. The Bell operator (which distinguishes among the four Bell

2 This fidelity overcomes the value 2
3

corresponding to the case in which Alice measures her
qubit and communicates the result to Bob classically.
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states of 2 qubits) cannot be measured unless both qubits interact appreciably
with each other (as it occurs with the CNOT gate used in the protocol explained
above), something which is very hard to achieve with photons. However, with
atoms in EM cavities the hopes are high.

Perhaps the most realistic application of quantum teleportation outside of
pure physics research is in the field of quantum computation. In fact, quantum
teleportation, which doubtlessly will be extended to entangled states from differ-
ent kinds of systems (photons and atoms, ions and phonons, etc.), might have,
in the future, remarkable applications for quantum computers and in computer
networks (for example, combined with prior distillation of good EPR pairs), as
well as in the production of quantum memory records by means of teleporta-
tion of information on systems such as photons to other systems as trapped
and well-isolated ions in cavities [50, 60]. A quantum computer can work on
superposition of many different inputs at once. For instance, it can run at al-
gorithm simultaneously on one million inputs, using only as many qubits as a
conventional computer would need bits to run the algorithm once on a single
input. Theorists have proved that some algorithms running on quantum com-
puters can solve certain problems faster (i.e., in fewer computational steps) than
any known algorithm running on a classical computer [40, 41, 61]. The prob-
lems include, for example, factoring large numbers, which is of great interest for
breaking secret codes, and searching for items in a database. So far only the
most basic elements of quantum computers have been built: logic gates that
can process one or two qubits [62, 63]. The realization of even a small scale
quantum computer is still far away. A key problem is transferring quantum
data reliably between different logic gates or processors, whether within a single
quantum computer or across quantum networks. Quantum teleportation is one
solution. In fact, Gottesman and Chuang [64] recently proved that a general
quantum computer can be built out of three basic components: entangled par-
ticles, quantum teleporters, and gates that operate on a single qubit at a time.
This result provides a systematic way to construct two-qubit gates. The trick
of building a two-qubit gate from a teleporter is to teleport two qubits from
the gate’s input to its output, using carefully modified entangled pairs. The
entangled pairs are modified in just such a way that the gate’s output receives
the appropriately processed qubits. Performing quantum logic on two unknown
qubits is thus reduced to the tasks of preparing specific predefined entangled
states and teleporting. Meantime, the complete Bell state measurement needed
to teleport 100% efficiency is itself a type of two-qubit processing.

Teleportation of complicate objects can be also considered as an interesting
and dreamy subject which one can think about [65]. Can we really hope to
teleport complicated objects? It seems that, concerning this, there are many
severe obstacles. For instance, the object has to be in a pure quantum state, and
such states are very fragile. Photons do not interact with environment much,
so our experiments can be done in the open space, but experiments with atoms
and larger objects must be done in a isolated vacuum to avoid interactions with
gas molecules and environments. In addition, the larger an object becomes,
the easier it is to disturb its quantum state-even by thermal radiation from the
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walls of the apparatus. This is why we do not routinely see quantum effects
in our everyday world. Quantum interference, an easier effect to produce than
entanglement or teleportation, has been demonstrated with buckyballs, sphere
made of 60 carbon atoms. Such work will proceed to larger objects, perhaps
even small viruses, but we might not expect to continue this for much larger
objects. Other problems is due to finding proper procedures for teleporting all
desired kinds of objects. Foe example, it has not yet been proposed a realizable
scheme to make possible teleportation of the spatial wave function of an object-
even a particle. Also, the Bell state measurement is an obstacle. In addition
to some experimental difficulties relating to this kind of measurement, what
would it mean to do a Bell state measurement of, e.g., a virus consisting of
about 107 atoms? Clearly it is a serious problem to extract the 108 bits of
information that such a measurement would generate. Meantime, for an object
of just a few grams the numbers become apparently impossible: 1024 bits of
data. Teleportation of more complicated objects particularly a person with
1032 bits of information can be considered as an exciting but perhaps a fictitious
subject. Being in the same quantum state does not seem necessary for being
the same person. It seems that we change our quantum state all the time and
remain the same people. Conversely, identical twins or biological clones are not
the same people, because they have different memories. So may be Heisenberg
uncertainty as well as quantum no-cloning theorem do not prohibit us from
replicating a person precisely enough for him to think he was the same as the
original. Therefore, it seems that the teleportation of a person does not require
quantum accuracy, and provides a surprising procedure for long travel, while
the time for the person is frozen.

In the part two of this dissertation, we have studied quantum dense coding in
a spatial scheme resulting in more efficiency than some other well-known proto-
cols, and also we have proposed a theoretical scheme which can provide position
state teleportation of an object. To do this, once again we have considered an
entangled source between two parties which works very similar to that is used
in our two double-slit scheme.



5. QUANTUM DENSE CODING BY SPATIAL STATE

ENTANGLEMENT

5.1 Introduction

The quantum entanglement property is providing new methods of information
transfer, in some cases much more powerful than their classical counterparts. In
quantum information theory, entanglement, as a key concept is used for a wide
range of applications, such as quantum dense coding [42], teleportation [43],
secret sharing [66] and key distribution [44]. To find more about the mentioned
topics and the efforts done on them, both theoretically and experimentally, one
can refer to [45, 67] and references therein.

Quantum dense coding protocol was proposed originally by Bennett and
Wiesner [42] in 1992. The protocol describes a way to transmit two bits of
classical information through manipulation of only one of the entangled pair
of spin- 1

2 particles, while each of the pair individually could carry only one bit
of classical information. The first experimental realization of dense coding has
been reported by Mattle et al. [48] in 1996.

There have been attempts to generalize dense coding protocol to achieve
higher channel capacity. The first proposition in this regard was due to the
original reference of dense coding [42] by using a pair of n-state particles pre-
pared in a completely entangled state (instead of an EPR spin pair in a singlet
state) to encode n2 values. In practice, there might be some limitations for find-
ing n-state particles with high n’s and controlling them. Very recently, some
progress has been made in this direction [68], but it is still worthy, both the-
oretically and experimentally, to examine other alternatives for achieving this
goal. For example, Bose et al. [69] studied N pairwise entangled states in which
each party gets one particle except Bob with N qubits. Also in a more efficient
scheme, they considered N + 1 parties sharing maximally entangled qubits in a
way that each party, including Bob, possesses one qubit. Moreover, some recent
attempts on generalization of quantum dense coding can be found in [66-69]. In
an elegant alternative, Vaidman [74] proposed a method for utilizing canonical
continuous variables x (position variable) and p (linear momentum variable) to
perform a quantum communication. In this regard, Braunstein and Kimble [75]
presented a typical realization for continuous variable dense coding using the
quadrature amplitudes of the electromagnetic fields in which the mean photon
number in each channel should be considered very large. Recently, in another
way, some effort has been also done on experimental realization of continuous
variables dense coding [76].
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Here, we have presented a theoretical extended version of dense coding pro-
tocol using entangled position state of two particles shared between two parties.
In this regard, all necessary Bell states and their corresponding unitary opera-
tors are presented to encode and decode information [77]. This version, at large
N ’s, can be considered as a conceivable scheme for Vaidman’s idea [74] except
that we have considered just the position variable (not both canonical variables
x and p) for communication. Finally, the efficiency of our scheme is compared
with some other known ones.

5.2 Description of the dense coding set-up

Consider an original EPR source [20] which emits a pair of identical (fermionic
or bosonic) particles with vanishing total linear momentum, isotropically. Many
examples similar to this process can be found in different branches of physics
[78]. For instance, the molecule NO can decay from an excited state to a state of
two free atoms N and O which propagate in opposite directions, and in another
example, the Λ hyperon decays into a proton and a negatively charged π meson.
In our scheme, the source S is placed exactly in the middle of the two parties,
“Alice” and “Bob”, where each one has an array of receivers aligned on a vertical
line. The receivers just receive the particles and do not perform any destructive
measurement. Total number of the receivers of each party is considered to be
2N . Since Alice and Bob are assumed to be very far from each other and the
source is considered isotropic, there is an equal probability for every receiver to
obtain one of the emitted particles. We label the receivers placed at the upper
(lower) part of the x-axis with positive (negative) integers; 1, 2, . . . , N (-1, -2,
. . . , −N). Figure 5.1 shows an illustration of this scheme. Now, the position
state of the system (the arrays + the source) can be written in the form

|ψ1,2〉 =
1√
2N

N∑

n=1

[|n,−n〉 ± | − n, n〉] (5.1)

where the subscripts 1 and 2 are related to ± signs, respectively, and n refers to
label of the receivers. In addition, the order in writing the state is according to
the direct product of Alice’s state and Bob’s. The signs ± in |ψ1,2〉 indicate the
symmetry and anti-symmetry property of the position state with respect to the
exchange of particles. In the following, without loss of generality, we assume
bosonic property for our system, that is, |ψ1〉 represents the initial state of the
system.

5.3 A representation for Bell states

In general, the entangled state (5.1) can be considered as a member of a larger
family, that is,

|ψ(1,j)〉 =
1√
2N

N∑

n=1

[hj,2n−1|n,−n〉+ hj,2n| − n, n〉]
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Fig. 5.1: Schematic drawing of the proposed dense coding scheme. An original EPR
source is located between two array of receivers. The 2N receivers of each
party are connected to its corresponding lab by quantum channels. The main
quantum channels can be connected together in each lab using side quantum
channels. Alice’s lab is equipped with O(k±,j) encoder unitary operators,
and Bob’s lab contains a decoder unitary operator like H. The Bell state
measurement is completed by just a simple position measurement on Bob’s
outgoing channels.

1 ≤ j ≤ 2N (5.2)

in which

hi,j =
√

2N [H]i,j (5.3)

where H is a 2N -dimensional normalized symmetric Hadamard matrix which
satisfies the property H2 = I. Furthermore, the above entangled states can
be generalized to a more complete set of orthonormal and maximally entangled
states, which can be defined as

|ψ(k±,j)〉 =
1√
2N

N∑

n=1

[hj,2n−1|n, fk±(n)〉+ hj,2n| − n,−fk±(n)〉]

1 ≤ k ≤ N, 1 ≤ j ≤ 2N (5.4)

where k± and j are called family and member indices, respectively, and

fk±(n) = ±(n+ k − 1)mod(N). (5.5)

If one uses the convention

(k±, j) −→ 2N(k± − 1) + j (5.6)
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in which

k+ ≡ 2k

k− ≡ 2k − 1 (5.7)

then the mentioned subscript (k±, j) will find a natural form, as we have shown
in appendix B.

Now, the states (5.4) form Bell bases for our dense coding scheme. In fact,
it is straightforward to check that these states have the orthonormal and maxi-
mally entanglement properties, as we have shown in the following

〈ψ(k±,j)|ψ(k′±,j′)〉 =
1

2N

N∑

n,m=1

[hj,2n−1hj′,2m−1〈n, fk±(n)|m, fk′±(m)〉

+hj,2n−1hj′,2m〈n, fk±(n)| −m,−fk′±(m)〉
+hj,2nhj′,2m−1〈−n,−fk±(n)|m, fk′±(m)〉
+hj,2nhj′,2m〈−n,−fk±(n)| −m,−fk′±(m)〉]

=
1

2N

N∑

n=1

(hj,2n−1hj′,2n−1 + hj,2nhj′,2n)δk,k′

=
1

2N

N∑

n=1

(hj,nhj′,n)δk,k′

= δj,j′δk,k′ (5.8)

which shows the orthonormal property of our Bell bases. Meantime, for the
maximally entanglement property we can write

tr2(|ψ(k±,j)〉〈ψ(k±,j)|)

= tr2(

N∑

n,m=1

1

2N
[hj,2n−1hj,2m−1|n, fk±(n)〉〈m, fk± (m)|

+hj,2n−1hj,2m|n, fk±(n)〉〈−m,−fk±(m)|
+hj,2nhj,2m−1| − n,−fk±(n)〉〈m, fk±(m)|
+hj,2nhj,2m| − n,−fk±(n)〉〈−m,−fk±(m)|])

=
1

2N

N∑

n,m=1

[hj,2n−1hj,2m−1δn,m|n〉〈m|+ hj,2n−1hj,2mδn,−m−2k+2|n〉〈−m|

+hj,2nhj,2m−1δn,−m−2k+2| − n〉〈m|+ hj,2nhj,2mδn,m| − n〉〈−m|]

=
1

2N

N∑

n,m=1

[hj,2n−1hj,2m−1|n〉〈n|+ hj,2nhj,2n| − n〉〈−n|]

=
1

2N

N∑

n=−N(n6=0)

|n〉〈n| = 1

2N
I2. (5.9)



5. Quantum dense coding by spatial state entanglement 54

Here it should be noted that, the order of a typical real Hadamard matrix
can be 1, 2 and 4k where k is a positive integer [79, 80]. Physically, it means
that in other cases, i.e. for odd and half odd N cases, one cannot make enough
necessary entangled orthonormal states to perform an efficient dense coding.
However, it is not a serious limitation in our proposed scheme.

5.4 Alice’s encoding process

For the allowed N ’s, Alice can find unitary encoding operators which transform
the state describing the system in Eq. (5.1), |ψ1〉, as a Bell state with j = 1 in
the first family into the others given in Eq. (5.4). Then, the representation of
4N2 suitable unitary operators for this task can be considered, for example, as

O(k±,j) =
N∑

n=1

[hj,2n−1|n〉〈fk±(n)|+ hj,2n| − n〉〈−fk±(n)|] (5.10)

which operate on Bell bases in Alice’s lab as follows

O(k±,j)|ψ(k′± ,j′)〉 = |ψ(k′′±,j′′)〉 (5.11)

in which

hj′′,i = hj,ihj′,i (5.12)

(5.13)

when j′ = 1, and

k′′± = (k + k′ − 1)ss
′

mod(N) (5.14)

where s and s′ are signs of superscripts of k and k′, respectively. After the
completion of Alice’s encoding process, she sends her particle to Bob in a parallel
line to the x-axis.

It is useful to see the act of O(k±,j) operator on the Bell states in details.
Thus, we have

O(k±,j)|ψ(k′± ,j′)〉 =
1√
2N

N∑

n=1

N∑

m=1

[hj,2n−1hj′,2m−1〈fk±(n)|m〉|n, fk′±(m)〉

+hj,2n−1hj′,2m〈fk±(n)| −m〉|n,−fk′±(m)〉
+hj,2nhj′,2m−1〈−fk±(n)|m〉| − n, fk′±(m)〉
+hj,2nhj′,2m〈−fk±(n)| −m〉| − n,−fk′±(m)〉] (5.15)

which by using orthonormality condition of the states leads to

O(k±,j)|ψ(k′±,j′)〉 =
1√
2N

N∑

n=1

N∑

m=1

[hj,2n−1hj′,2m−1δ±(n+k−1),m|n, fk′±(m)〉

+hj,2n−1hj′,2mδ±(n+k−1),−m|n,−fk′±(m)〉
+hj,2nhj′,2m−1δ∓(n+k−1),m| − n, fk′±(m)〉
+hj,2nhj′,2mδ∓(n+k−1),−m| − n,−fk′±(m)〉]. (5.16)
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Now, there are two k+ and k− cases which should be considered. For the k+

case, we obtain

O(k+,j)|ψ(k′±,j′)〉 =
hj,2n−1hj′,2m−1|n, fk′′±(n)〉 + hj,2nhj′,2m| − n,−fk′′±(n)〉 (5.17)

in which m = n+ k − 1 and k′′ ≡ k + k′ − 1. In a similar way, for the k− case
we have

O(k−,j)|ψ(k′±,j′)〉 =

hj,2n−1hj′,2m|n, fk′′∓(n)〉 + hj,2nhj′,2m−1| − n,−fk′′∓(n)〉 (5.18)

where again m = n + k − 1 and Eq. (5.14) is satisfied. Since Alice’s encoding
process is done on the initial state of the system with j′ = 1, and also in a
normalized symmetric Hadamard matrix h1,i = +1, therefore, the act of the
O(k±,j) on the |ψ(k′±,j′)〉 results in the Bell states introduced in Eq. (5.4) with
hj′′,i = hj,i as well as Eq. (5.14).

5.5 Introducing basic gates and their realizability

It is a relevant question to ask about how to implement O(k±,j) operators in
practice. So here, we propose one way of performing this task by using some
basic and conceivable operators. For example, similar to Pauli’s operators in
the spin- 1

2 space, suitable basic unitary operators in the position space can be
considered to be

Nn| ± n〉 = ±| ± n〉 (5.19)

Pn| ± n〉 = | ∓ n〉 (5.20)

where the subscript n means that the operator acts as a local gate on the ±n-th
channels. The latter operator, Pn, is defined to relate the two groups of receivers
in the upper and lower halves of the x-axis. We also need to define a ladder
operator L+ to relate the receivers located on each half of the x-axis, so that

L+| ± n〉 = | ± (n+ 1)〉mod(N). (5.21)

Now, it is worthy to consider theoretical realization of the above mentioned
operators in this protocol. The operation of Nn gate can be easily conceived,
for instance, by a kind of phase shifter, whose action can be represented as

Nn = eiθ(∓n)π (5.22)

where θ(n) is the conventional unit step function. To conceive this operator,
one can consider a typical switch gate acting on the −n-th channel and its side
channel, as is shown in Fig. 5.2. If Nn turned ON (OFF), then the direct (side)
channel is closed and the side (direct) channel is opened. It is clear that this
set-up is required only for the channels having negative label.
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-n
Open Channel

Closed Channel Phase Shifter

S-Gate

Fig. 5.2: Quantum circuit diagram of Nn gate in an OFF state.

On the other hand, Pn operator can be considered as a kind of swap gate
between the channels n and −n. So, to design this operation, one can use two
local switch gates acting on these two channels. If Pn turned ON (OFF) it
means that direct (side) channels are closed and side (direct) channels are open
(closed). Figure 5.3 schematically shows a Pn gate which is constructed with
two quantum switch gates and side channels.

n

-n
Open Channel

Closed Channel

S-Gate

Fig. 5.3: Circuit diagram of Pn gates in an OFF state.

In a similar manner, the action of the L+ operations can be conceived using
2N(N−1) numbers of the switch gates and side quantum channels, as shown in
Fig. 5.4. Therefore, our basic operators, i.e. Nn, Pn and L+, can be constructed
using some quantum switch gates and side channels.
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n
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N+n-1

n n+1 N+n-2

S1 S2 SN-1

Fig. 5.4: Schematic application of L+ operators, by using 2N(N −1) switch gates and
side quantum channels, for n > 0. If Lk

+ is required, then the all Sk gates
must be turned ON.

As a proposal, if our introduced channels in the scheme are considered, for in-
stance, superconductor wires containing an entangled current according to (5.1),
then these basic operators can be realized by using switching process in the su-
perconductor circuits. In fact, when a basic gate is OFF, its main channel(s) is
(are) superconducting and the side channel(s) is (are) not superconducting, and
conversely, if the gate is ON then the main channel(s) is (are) not superconduct-
ing and the suitable and corresponding side channel(s) is (are) superconducting.
However, full realization of this proposition is left as an experimental challenge.

Now using the above basic gates, it is possible to show that one can construct
operators which transform any member of a family to any other member of the
other ones, that is, O(k±,j). Here, our construction mechanism is to find a set of
operators, for instance Oj , to transform the j label of the Bell states of any given
family. Next, we should introduce another set of operators, Fk± , to transform k
label of the Bell states of any given member. Thus, our desired total operators
have the form

O(k±,j) = Fk±Oj . (5.23)

The explicit form of theOj operators based on the basic gates can be constructed
using a normalized symmetric Hadamard matrix as follows

Oj =

N∏

i=1

(PiNiPi)
(ha,2i−1−hj,2i)/2N

(ha,2i−hj,2i)/2
i

1 ≤ j, a ≤ 2N (5.24)
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where a is an arbitrary fixed positive integer. One can easily check that, the
operator Oj has the property

Oj |ψ(k±,j′)〉 = |ψ(k±,j′′)〉 (5.25)

where hj′′ ,i obeys the rule in Eq. (5.12) for every j′. In fact, in a detailed form
we can write

Oj |ψ(k±,j′)〉 =
1√
2N

N∑

n=1

[hj′,2n−1(−1)(ha,2n−1−hj,2n−1)/2|n, fk±(n)〉

+hj′,2n(−1)(ha,2n−hj,2n)/2| − n,−fk±(n)〉]

=
1√
2N

N∑

n=1

[hj′,2n−1hj,2n−1|n, fk±(n)〉+ hj′,2nhj,2n| − n,−fk±(n)〉]

=
1√
2N

N∑

n=1

[hj′′,2n−1|n, fk±(n)〉+ hj′′,2n| − n,−fk±(n)〉]. (5.26)

Furthermore, the explicit form for Fk± can be considered as

Fk± = L
(N−k+1)
+

N∏

i=1

P
(2k−k±−1)
i (5.27)

in which k+ ≡ 2k and k− ≡ 2k − 1. It can be easily seen that they transform
families to each other according to

Fk± |ψ(k′± ,j′)〉 = |ψ(k′′±,j′)〉 (5.28)

where k
′′± satisfies the rule in Eq. (5.14). Therefore, the obtained explicit

form for O(k±,j) operators is equivalent to their representation in Eq. (5.10)
and (5.11). In appendix B, one can find examples concerning explicit forms of
O(k±,j) operators for some initial cases.

5.6 Bob’s decoding process

It was seen that after completing the encoding process, Alice sends her particle
to Bob. Thus, to each of Bob’s receivers, two outgoing quantum channels should
be considered for which we use the labels “control” and “target” channel (in
brief; C and T-channel, respectively). Now we assume that, at first Bob opens
all T-channels and closes all C-channels. Thus, he receives his own particle,
which was devoted to him by the source, at one of the T-channels. Then, he
sends it to a quantum storage media and closes all T-channels as well as opens
all C-channels and waits to receive the processed particle which is sent to him by
Alice. After synchronizing the two particles, Bob is ready to perform a Bell state
measurement (BSM) on them. To do this, Bob needs to apply a grand unitary
and Hermitian operator on all the channels in his lab which should be followed
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by a position state measurement on his outgoing channels. The representation
of the grand operator can be considered as

H =

2N∑

j=1

N∑

k=1

|j, f ′
k±(j)〉〈ψ′

(k± ,j)| (5.29)

where

f ′
k±(j) = ±(j + k − 1)mod(2N) (5.30)

and

|ψ′
(k±,j)〉 =

1√
2N

2N∑

n=1

hj,n|j, f ′
k±(j)〉 (5.31)

which is a compact form of Eq. (5.4), and can be transformed to it by applying
some local unitary operator. It is easy to check that the properties

H|ψ′
(k±,j)〉 = |j, f ′

k±(j)〉 (5.32)

and also H2 = I are satisfied. Here, to make the former property consistent
with our channel labelling it suffices, just as an example, to use the following
convention: if in a ket like |i〉 we have 1 ≤ |i| ≤ N , then we should change i to
−i, and in the case of N + 1 ≤ |i| ≤ 2N , to |i| −N . Moreover, in the following,
we have shown that the grand unitary operator is also a reversible one.

H2 =

2N∑

j,j′=1

N∑

k,k′=1

|j, f ′
k±(j)〉〈ψ′

(k± ,j)|j′, f ′
k′±(j′)〉〈ψ′

(k′± ,j′)|

=

2N∑

j,j′=1

N∑

k,k′=1

2N∑

n,n′=1

hj,nhj′,n′ |j, f ′
k±(j)〉〈n′, f ′

k′±(n′)|δj′,nδk,k′

=
∑

j,k,n,n′

hj,nhn,n′ |j, f ′
k±(j)〉〈n′, f ′

k±(n′)|

=
∑

j,k

|j, f ′
k±(j)〉〈j, f ′

k± (j)| = 1. (5.33)

It can be argued that any general quantum physical process is required to
operate by “finite means”, i.e., it is equipped only with the possibility of applying
any operation of some finite fixed set of basic unitary operations [81]. Also, it
is shown that various quite small collections of unitary operators (so called
“universal sets” of operations) suffice to approximate any unitary operation on
any number of qubits to arbitrary accuracy [82, 84]. Furthermore, in a recent
work, Bremner et al. [85] showed that any unitary operation can be constructed
using finite numbers of an arbitrary conditional operator. Therefore, the grand
unitary operator H is constructible using some finite basic operators. In the
following, as an example, a realizable theoretical scheme for the BSM will be
presented, using our introduced basic gates.
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5.7 A conceivable scheme for Bell state measurement

In this section, we want to find an explicit form for H operator based on the in-
troduced basic operators. At first, Bob needs one kind of logic gates to entangle
two particles. The first presentation and demonstration of these kinds of gates,
called CNOT, was performed in 1995 by Barenco et al. [62] and Monroe et al.
[63], respectively. Here, we have considered another similar gate as a non-local
operator which acts conditionally on the |l,m〉 state as

PCS|l,m〉 = θ(−l)(I ⊗ Pm)|l,m〉+ θ(l)|l,m〉 (5.34)

where PCS stands for position controlled swap operator and θ(l) is the conven-
tional unit step function.

To understand the action of this operator there is a way using four typical
spin- 1

2 CNOT gates. Figure 5.5 shows a theoretical sketch of this construction.

The CNOT is somehow a complement of the usual CNOT in the sense that

CNOT|x, y〉 = |x, x+ y〉mod(2)

CNOT|x, y〉 = |x, x+ y〉mod(2). (5.35)

If a spin- 1
2 particle passes through the control channel then the two first CNOT

and CNOT definitely change spin of an intermediate spin- 1
2 particle, named

spin target, which is preset to a fixed state , e.g., |0〉. It is assumed that any
change in the state describing the spin target means switching the swap gate
for the channels m and −m. The two latter CNOT and CNOT are just to
reset the spin target. To show this PCS gate in our quantum circuits, we adopt
a simplified representation for it, as depicted in Fig. 5.6. Our PCS gate can
be realized using, for example, superconductor circuits. It is obvious that any
change in the spin target results into a change in the magnetic flux passing
through a superconductor circuit. For switching the swap gate the induced
current can be amplified by a superconducting LC circuit in order to produce at
least a critical magnetic field to set the direct (side) channel not superconducting
(superconducting).

On the other hand, the same as the spin- 1
2 case, Bob can use Hadamard

operators in the position space with the form

Hxn =
1√
2
(Pn +Nn) (5.36)

where Hxn is a local operator acting on the ±n-th channels. Although the
position Hadamard operator has not a multiplicative form, but its design is
relatively straightforward in our scheme. Figure 5.7 shows a schematic circuit
for the Hadamard gate acting on the n-th channel in which we have assumed
that the probability of passing a particle through each basic gate is the same. In
fact, in our scheme as an advantage, it is not necessary to find a multiplicative
form to design such operators using the basic ones.
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Spin target
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Fig. 5.5: Schematic diagram of a position controlled-swap gate.

Pm

Pm

-n

m

-m

Fig. 5.6: Schematic representation of a PCS gate. For simplicity, we omit dotted cross
lines in our quantum circuits.

For N ≥ 2 cases, however, applying just PCS and Hxn operators does not
produce pure position states in a disentangled and measurable form. So, we
should introduce a non-local unitary operator for this mean which acts like

U(N)| ± l,±m〉 =
1√
N

N∑

n=1

hm,m+n−1|fl±(n), fm±(n)〉mod(N) (5.37)

where l and m are positive integers. Moreover, here, hm,n is an element of an
N -dimensional normalized symmetric Hadamard matrix. It is straightforward
to check that U2

(N) = I, as we have shown in the following

U(N)U(N)| ± l,±m〉 =
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n

     Nn

     Pn

Fig. 5.7: Quantum circuit diagram of Hxn gate.

1

N

N∑

n=1

N∑

k=1

hm,m+n−1hm+n−1,m+n+k−2|fl±(n+ k − 1), fm±(n+ k − 1)〉mod(N)

=
1

N

∑

a

∑

k

hm,a−k+1ha−k+1,a| ± (l + a−m),±a〉

=
∑

a

δm,a| ± (l + a−m),±a〉 = | ± l,±m〉. (5.38)

The same as O(k±,j) operator, it is also possible to find an explicit form for
U(N) operator based on the basic gates. Here, for example, we have considered
it as

U(N) =
1√
N

N/2−1∑

n=0

{L2n
+ ⊗ [

N∏

i=1

P
(hb,i−h2n+i,i)/2
i NiP

(hb,i−hN−2n+i,i)/2
i ]L2n

+

+L2n+1
+ ⊗ [

N∏

i=1

(PiNiPiNi)
(hb,i−hN−2n−1+i,i)/2]L2n+1

+ } (5.39)

where hi,j is an element of an N -dimensional real symmetric Hadamard ma-
trix. In addition, the subscript b is an arbitrary constant positive integer. This
relatively complex form results from the generalization procedure introduced in
appendix B. If we represent U(N) operator in the form

U(N) =
1√
N

N−1∑

n=0

(Ln+ ⊗A(n+1)L
n
+) (5.40)

then, in a similar manner used to design Hxn operator, it will be possible to
conceive U(N) operator using the local operator A(n+1) which can be designed
by the basic gates, and a nonlocal operator working like PCS gate, as is shown
in Fig. 5.7. Here, we have assumed that each of Bob’s channels is divided into
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SN-n+2SN-n+1  SN-n   S1   SN-1

Fig. 5.8: Quantum circuit diagram of U(N) operator for the n-th T-channel. Here, each
branch of the T-channel acts as a control channel for the Sk gates applied on
the C-channels.

N identical branches, so that the probability of entering the particle into each
branch is the same. Finally, each branch is joined to its correspondence channels
in Bob’s lab. It should be noted that, the mechanism of the required conditional
gate in this quantum circuit is the same as PCS gate, but it should turn on the
Sk gates (instead of Pn gate) to operate Lk+ on Alice’s particle.

Now, using the above mentioned operators, Bob can perform his BSM in
this way

U(N)(Hx1Hx2 . . . Hxn ⊗ I)PCS|ψ(k±,j)〉 = |m,n〉 (5.41)

which should be followed by a position measurement on the outgoing channels.
Figure 5.9 shows a schematic quantum circuit of Bob’s lab. In Eq. (5.41), m
and n are some unique functions of k± and j. In addition, action of the set
of operators in this equation is equivalent to the action of the grand operator
(5.29).

5.8 The rate of classical information gain

We have seen that, there are 4N2 Bell basis and the same number of differ-
ent unitary operators O(k±,j) for encoding in our dense coding scheme. This
obviously corresponds to encoding 4N2 different messages by Alice. Thus, she
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Fig. 5.9: Some details of Bob’s laboratory. Bold lines, between gray boxes and PC
show classical channels (i.e., ordinary wires), and the others are quantum
ones. Gray boxes represent quantum memories which our programmed PC
controls their whole performance, including opening and closing C and T-
channels on time and the synchronization of the two particles. The connec-
tion points between quantum channels are shown by the bold points.

can send 2 log2(2N) bits of classical information per particle to Bob. Now,
he needs N PCS, 2N Hadamard and one U(N) gates to read out the sent clas-
sical information during the BSM. Since Bob performs one BSM on just two
particles, it is possible to consider that all PCS and then all Hadamard gates
operate in a parallel form, i.e. concurrently. If the operation times for the PCS,
Hadamard and U(N) gates are tp, th and tu, respectively, the rate of classical
information gain R, defined as sent classical bits of information per unit time
and sent particle, is

Rx =
2 log2(2N)

tp + th + tu
. (5.42)

In a similar way, one can calculate R for a dense coding protocol which works
using N pairwise entangled qubits and/or N maximally entangled qubits shared
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between two parties [69, 86]. In the pairwise entangled case, 2N classical bits
of information are transferred from Alice to Bob. Meantime, in this case, N

separate CNOT and Hadamard gates are required by Bob to decode the Bell
states. Thus, its R in terms of bits per unit time per sent particle is

Rp =
2N

N
2(tc + th)

(5.43)

where tc is the operation time of a CNOT gate. Recently, however, Lee et al. [87]
assert that the rate of information gain for this case is as high as 2N/N(tc+ th)
bits per unit time. Concerning this, we have shown in appendix C that their
claims are unfounded. On the other hand, for the maximally entangled case,
the number of sent classical bits is N. In this case, Bob needs (N− 1) successive
CNOT and one Hadamard gates so that he gains

Rm =
N

(N− 1)[(N− 1)tc + th]
(5.44)

bits per time and particle. Now, if we assume that both N and N are very large
and all basic gates operate in an equal time interval, i.e. tc ∼ th ∼ tp/4 ∼
tu/N ≡ t, then Rx = 2 log2(2N)/Nt and Rp = Rm = 1/Nt. Therefore, it can be
easily seen that at large N ’s, if N = N is considered, i.e. dimensions of Hilbert
spaces are identical, then our protocol is more efficient than both the pairwise
and the maximally entangled cases with a logarithmic factor.

Furthermore, other degrees of freedom such as spin, polarization and squeeza-
tion can be added to our protocol in order to obtain a more powerful quantum
dense coding. Here, for instance, we consider that each particle can also have
spin S. To introduce spin, it is sufficient to assume that the source emits en-
tangled pair of particles not only with vanishing total momentum but also with
zero total spin. Therefore, the quantum state of the system would be

|ψ1〉xs =
1√

2N(2S + 1)

N∑

n=1

[|n,−n〉+ | − n, n〉]

×
2S∑

s=0

(±1)s|(S − s),−(S − s)〉 (5.45)

which is simply a tensor product of position and spin states of the system.
Therefore, now Alice is capable of sending 2 log2[2N(2S+ 1)] bits per particle.

5.9 Conclusions

We have proposed a theoretical extended version of dense coding protocol by
using entangled spatial states of the two particles shared between two parties.
Our construction is based on using the well known real symmetric Hadamard
matrix for representing orthogonal states, required encoding and decoding oper-
ators, and hence is subject to its intrinsic characteristics. Furthermore, we have
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given a typical proposition for initial realization of the scheme. In this regard,
some basic gates as well as a position conditional gate have been introduced
and it is shown that whole of the scheme can be established based upon them.
By comparing our scheme with some of the previously proposed multi-qubit
protocols, it is shown that the rate of classical information gain in our case is
better than them by a logarithmic factor. Also we have shown that capability
of considering internal degrees of freedom, like spin, strengthens the scheme in
a straightforward manner.



6. A SCHEME TOWARDS COMPLETE STATE

TELEPORTATION

6.1 Introduction

Teleportation scheme proposed by Bennett et al. [43] is a protocol for disembod-
ied transmission of an unknown quantum state of a spin- 1

2 particle by a sender,
Alice, to a receiver, Bob, by conveying two classical bits of information. In
addition, the successful experimental realizations of this protocol, particularly
for polarization states of photons [50, 51], stimulated studying of teleportation
protocol for more complex systems. For instance, extensions to N -dimensional
Hilbert spaces recently have attracted much attentions. In [83-86] an N -level
source and in [92, 93] some two level EPR sources have been utilized to ac-
complish N -level state teleportation. Using the above entangled versions, it is
theoretically possible to teleport any system with discretizable Hilbert space.

But, what about teleportation of position states of a quantum object, ψ(x)?
The theoretical answer to this question was first provided by Vaidman [74, 94],
utilizing perfect entanglement between position and momentum which results
in a scheme for teleportation of continuous variables, or the wave function ψ(x).
Interestingly, reliable teleportation of continuous variables is shown to be imple-
mentable in experiments. In fact, Braunstein and Kimble [58] made a realistic
proposal for teleportation of quantum state of a single mode of the electromag-
netic field. In other words, their scheme was a typical implementation of Vaid-
man’s method. Then, experimental realization of Braunstein-Kimble method
was performed by Furasawa et al. [59]. But, it is believed that this type of
experiment cannot be expected to improve, due to difficulties in establishing
highly squeezed light fields [53], and even in ideal experimental conditions, de-
tails of Bob’s reconstruction process results in an almost perfect replica of light
fields [45]. Also, as Vaidman pointed out, Braunstein-Kimble method is not
applicable directly for teleporting ψ(x), where x is the spatial position of a
quantum object [94]. As a solution, Vaidman proposed a way to overcome this
disability by introducing a quantum-quantum interaction which can convert the
continuous variable of a real position to the electromagnetic field amplitude
variable. However, other methods or alternatives might be possible to solve this
problem.

In this chapter, we have presented an alternate theoretical scheme to achieve
realization of teleporting wave function ψS(x) of an object having spin. To
do this, we have offered a scheme, including a special EPR source and some
arrays of receivers to teleport a multi-level entangled position-spin state in our
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three-dimensional space [95]. Moreover, some theoretical details on Bell state
measurement (BSM) and the reconstruction process have been illustrated in our
novel spatial scheme.

6.2 Description of the teleportation set-up

Consider a theoretical set-up including two parties, Alice and Bob, who have labs
which contain 2N -receiver arrays, as shown in Fig. 6.1. An EPR source is placed
in the center of the symmetry axis (z-axis) of the two receiver lines, which emits,
isotropically, two identical maximally entangled particles with vanishing total
momentum. The receivers are labelled by ±1, ±2,. . . , ±N . We assume that
they do not perform any destructive measurements on the received particles. All
lines that connect each receiver to the related lab are representatives of quantum
channels. Each quantum object with an unknown state, as an initial import to
Alice’s lab, is sent, after quantum scanning, to her lab to be combined with
her own particle. Then, she performs a BSM on her two particles. Based upon
the result of this measurement, she communicates with Bob through a classical
channel, sending related binary codes. Bob, after receipt of Alice’s message,
reconstructs the initial quantum state using his lab.

6.3 A representation for Bell bases

After this illustration, it is possible to explain more details about the scheme
for teleportation of quantum position state of an object. At the first step, we
study the teleportation of one-dimensional position state of a spinless particle.
In this case, the total state describing the system (EPR source+the arrays) is

|ψ1(2)〉x =
1√
2N

N∑

n=1

[|n,−n〉 ± | − n, n〉] (6.1)

where n refers to the label of the receivers. Additionally, we adopt the conven-
tion that in the tensor products the left (right) states belong to Alice (Bob).
The signs ± in |ψ1(2)〉x, in which 1(2) indicates +(-), stand for symmetry and
antisymmetry of the state with respect to the two-party exchange which simply
means bosonic or fermionic property of our system. Here, without any loss of
generality, we admit that our system is bosonic. In general, the entangled state
(6.1) can be considered as a member of a larger family, that is,

|ψ(1,j)〉x =
1√
2N

N∑

n=1

[hj,2n−1|n,−n〉+ hj,2n| − n, n〉]

1 ≤ j ≤ 2N (6.2)

in which hi,j =
√

2N [H]i,j , and H is a normalized symmetric 2N×2N Hadamard
matrix which satisfies the property H2 = I. Furthermore, the above states can
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Fig. 6.1: A primary scheme for teleportation of a position state.

be generalized to a more complete set of orthonormal and maximally entangled
states, which are defined as

|ψ(k±,j)〉x =
1√
2N

N∑

n=1

[hj,2n−1|n, fk±(n)〉+ hj,2n| − n,−fk±(n)〉]

1 ≤ k ≤ N, 1 ≤ j ≤ 2N (6.3)

where j and k± are member and family indices, respectively, and we have also
adopted the convention fk±(n) = ±(n + k − 1)mod(N). By the way, the states
(6.3) form Bell bases for our teleportation scheme. In fact, it can be simply
checked that these states have the properties

〈ψ(k±,j)|ψ(k′±,j′)〉 = δj,j′δk,k′

tr1(2)(|ψ(k±,j)〉〈ψ(k±,j)|) = 1
2N I1(2). (6.4)

In addition, as known, the order of a real Hadamard matrix is 1, 2 and 4k with
k as a positive integer [79, 80]. Thus, in other conditions, there does not exist
any related teleportation scheme. In other words, we cannot make all necessary
entangled orthonormal states to perform teleportation for odd and half odd N
cases.

6.4 Unitary transformation of Bell bases

For the permitted N ’s, one can find unitary operators which transform the
initial state of the system into the other Bell states given in Eq. (6.3). The
representation of suitable operator for this mean is

O′
(k±,j) =

N∑

n=1

[hj,2n−1|n〉〈−fk±(n)|+ hj,2n| − n〉〈fk±(n)|] (6.5)
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which acts on the Bell bases as

O′
(k±,j)|ψ(k′±,j′)〉x = |ψ(k′′±,j′′)〉x (6.6)

where

hj′′,i = hj,ihj′,i (6.7)

at j′ = 1, and

k′′± = (k + k′ − 1)−ss
′

mod(N) (6.8)

in which s and s′ are signs of superscripts of k and k′, respectively. In the
following, it will be seen that the operator O′

(k±,j) are applied by Bob to re-
construct the unknown wave functions which are teleported to him by Alice.
Moreover, an example for realization of these operators can be considered the
same as O(k±,j) mentioned for the dense coding scheme in the previous chapter.

Here, it is useful to have a review on the details of action of this unitary
operator on the Bell bases. Thus, using orthonormality of the position bases,
we have

O′
(k±,j)|ψ(k′±,j′)〉x =

1√
2N

N∑

n,m=1

[hj,2n−1hj′,2m−1δ∓(n+k−1),m|n, fk′±(m)〉

+hj,2n−1hj′,2mδ∓(n+k−1),−m|n,−fk′±(m)〉
+hj,2nhj′,2m−1δ±(n+k−1),m| − n, fk′±(m)〉
+hj,2nhj′,2mδ±(n+k−1),−m| − n,−fk′±(m)〉]. (6.9)

Now, there are two k+ and k− cases which can be examined separately. For the
k+ case, we have

O′
(k+,j)|ψ(k′±,j′)〉x =

1√
2N

N∑

n=1

[hj,2n−1hj′,2(n+k−1)|n, fk′′∓(n)〉

+hj,2nhj′,2(n+k−1)−1| − n,−fk′′∓(n)〉] (6.10)

where k′′ = k + k′ − 1. Similarly, for the k− case we can write

O′
(k−,j)|ψ(k′±,j′)〉x =

1√
2N

N∑

n=1

[hj,2n−1hj′,2(n+k−1)−1|n, fk′′±(n)〉

+hj,2nhj′,2(n+k−1)| − n,−fk′′±(n)〉] (6.11)

where once again k′′ = k + k′ − 1. Therefore, it is clear now that for j′ = 1
Eqs. (6.7) and (6.8) are satisfied.
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6.5 General procedure for teleporting an object

In the one-dimensional scheme, the most general position states which Alice is
able to teleport is

|φ〉x =

N∑

n=1

[an|n〉+ a−n| − n〉]. (6.12)

Concisely, the mapping of the object’s wave function to this state can be con-
ceived by a typical scanning, for instance, using two approaching arrays of re-
ceivers sweeping the object. After this scanning, Alice has to combine her own
particle with the given one. By rewriting the total state of the three particles
based on our proposed Bell bases, she must perform a BSM on her two pos-
sessed particles and then send the classical obtained results, which encode the
retrieving process, to Bob as the following

|φ〉x|ψ1〉x =
1√
2N

N∑

n=−N(n6=0)

N∑

m=1

an[|n,m,−m〉+ |n,−m,m〉]

=
1

2N

N∑

k=1

2N∑

j=1

|ψ(k±,j)〉xO′†
(k±,j)|φ〉x

Alice′s−→
BSM

|ψ(k±,j)〉xO′†
(k±,j)|φ〉x (6.13)

where

O′†
(k±,j) =

N∑

n=1

[hj,2n−1| − fk±(n)〉〈n| + hj,2n|fk±(n)〉〈−n|]. (6.14)

Now, it suffices for Bob to know the classical information identifying the
corresponding operator, i.e. (k±, j), to reconstruct the initial state |φ〉x using
a suitable O′

(k±,j) operator. Because this operator is a unitary operator, as we
can see in the following

O′
(k±,j)O

′†
(k±,j) =

N∑

n,m=1

[hj,2n−1hj,2m−1δn,m|n〉〈m|

+hj,2n−1hj,2mδn,−m−2k+2|n〉〈−m|
+hj,2nhj,2m−1δn,−m−2k+2| − n〉〈m|
+hj,2nhj,2mδn,m| − n〉〈−m|]

=
N∑

n=1

|n〉〈n|+ | − n〉〈−n| = I. (6.15)

Here, it should be pointed out that in the original scheme for the continuous
variables teleportation [74, 94], Alice needs to apply two separate kinds of mea-
surements on the position and momentum to accomplish a BSM for teleportation
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of ψ(x). But, in our proposed scheme, Alice needs to perform just one kind of
BSM on the position variable.

It is straightforward to check the rewriting done in the second line of Eq. (6.13).
To do this, we first consider

O′†
(k±,j)|φ〉x =

N∑

n,m=1

[hj,2n−1amδn,m| − fk±(n)〉 + hj,2n−1a−mδn,−m| − fk±(n)〉

+hj,2namδ−n,m|fk±(n)〉+ hj,2na−mδn,m|fk±(n)〉]

=
N∑

m=1

[hj,2m−1am| − fk±(m)〉+ hj,2ma−m|fk±(m)〉]. (6.16)

Then, by substituting this result in the second line of Eq. (6.13), we obtain

1

2N

N∑

k=1

2N∑

j=1

|ψ(k±,j)〉xO′†
(k±,j)|φ〉x

=
1

2N

N∑

k=1

2N∑

j=1

(
1√
2N

N∑

l=1

[hj,2l−1|l, fk±(l)〉+ hj,2l| − l,−fk±(l)〉])

×(
N∑

m=1

[hj,2m−1am| − fk±(m)〉+ hj,2ma−m|fk±(m)〉])

=
1

2N
√

2N

N∑

k=1

2N∑

j=1

N∑

l,m=1

[hj,2l−1hj,2m−1am|l, fk±(l),−fk±(m)〉

+hj,2l−1hj,2ma−m|l, fk±(l), fk±(m)〉
+hj,2lhj,2m−1am| − l,−fk±(l),−fk±(m)〉
+hj,2lhj,2ma−m| − l,−fk±(l), fk±(m)〉]

=
1√
2N

N∑

k,m=1

[am|m, fk±(m),−fk±(m)〉 + a−m| −m,−fk±(m), fk±(m)〉]

=
1√
2N

N∑

n=−N,(n6=0)

N∑

m=1

[am|m,n,−n〉+ a−m| −m,−n, n〉]

= |φ〉x|ψ1〉x. (6.17)

In the last three lines of this proof, we have used the orthogonal property of
rows or columns of the Hadamard matrix, that is,

∑

j

hj,mhj,n = 2Nδm,n. (6.18)

6.6 Alice’s Bell state measurement

To do a BSM, Alice needs to apply a grand unitary and Hermitian operator on
all the channels followed by a position state measurement on Alice’s outgoing
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m

-n

CNOT CNOTCNOT

Spin target

 G-Gate

Fig. 6.2: Schematic diagram of a position controlled-gate.

receivers. Here, for instance, we can consider the representation of the grand
operator as

Hx =

2N∑

j=1

N∑

k=1

|j, f ′
k±(j)〉〈ψ′

(k± ,j)| (6.19)

where f ′
k±(j) = ±(j+k−1)mod(2N) and |ψ′

(k±,j)〉x = 1√
2N

∑2N
n=1 hj,n|j, f ′

k±(j)〉x.
It is easy to check that Hx|ψ′

(k±,j)〉x = |j, f ′
k±(j)〉x, and H2

x = I. In addition,
to make the former property consistent with our channel labelling, it suffices to
apply a proper unitary operator. It is seen that the required grand operator can
be considered as a conditional gate which acts in a 2N -dimensional (channel)
Hilbert space. Furthermore, based on the works of Deutsch [81] and Barenco
et al. [82] as well as Bremner et al. [85], we can construct the grand operator
using, for example, a set of controlled gates. Thus, we introduce our position
controlled gate (PCG) which acts like

PCG|n,m〉 = θ(−n)(I ⊗G)|n,m〉+ θ(n)|n,m〉 (6.20)

where θ(n) is the unit step function, and G is a general form for Nm, Pm and L+

basic gates. To understand the action of this operator there is a way using four
well-known spin- 1

2 CNOT gates. Figure 6.2 shows a sketch of this theoretical

construction. The CNOT is somehow a complement to the usual CNOT in the
sense that CNOT|x, y〉 = |x, x+ y〉mod(2) and CNOT|x, y〉 = |x, x+ y〉mod(2). If,

for instance, a spin- 1
2 particle passes through the control channel, then the two

first CNOT and CNOT definitely change spin of an intermediate spin- 1
2 particle,

named spin target, which is preset to a fixed state , e.g. |0〉. It is assumed that
any change in the state describing the spin target means switching the gate for
acting on the channel m. The two latter CNOT and CNOT are just to reset the
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spin target. This conditional gate can be realized using, for example, supercon-
ductor circuits. It is obvious that any change in the spin target results into a
change in the magnetic flux passing through a superconductor circuit. Thus, for
switching the gate, the induced current can be amplified by a superconducting
LC circuit in order to produce at least a critical magnetic field to set the direct
(side) channel not superconducting (superconducting).

6.7 Teleportation of an object having spin

At this stage, one can think of an entangled position-spin state teleportation
of a particle having spin S. To accomplish this, it is only sufficient to assume
that the source emits entangled pair of particles not only with vanishing total
momentum but also with zero total spin. Therefore, the quantum state of the
system would be

|ψ1〉xs =
1√

2N(2S + 1)

N∑

n=1

2S∑

s=0

(±1)s[|n,−n〉+ | − n, n〉]|(S − s),−(S − s)〉

(6.21)

which is simply a tensor product of position and spin states of the source. So,
as an advantage, it is not necessary to have any entanglement between these
two degrees of freedom. By this system, Alice would be able to send unknown
quantum states which have the following general form

|φ〉xs =

N∑

n=−N(n6=0)

2S∑

s=0

ans|n, S − s〉. (6.22)

As is seen, to teleport spin state along with position state, it does not need to
change our formalism drastically, but it simply needs the map N → N(2S + 1)
in our mathematical stages. So, just by adapting our protocol to work for
4N2(2S + 1)2 dimensions of Hilbert space, we can simultaneously accomplish
spin state as well as position state teleportation for the entangled state in the
form |φ〉xs. This procedure can be generalized to teleportation of any other
degrees of freedom of an object, provided that its necessary entanglement is
supplied in the source.

6.8 Teleportation of a 2-dimensional object using a planar

quantum scanner

To extend the scheme to the teleportation of a two-dimensional position state of
an object, we assume that our arrays are planar so that the state of our system
would be

|ψ1(2)〉xy =
1√

4NxNy

Nx∑

nx=1

Ny∑

ny=1
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[|(nx, ny), (−nx,−ny)〉 ± |(−nx,−ny), (nx, ny)〉] +

[|(nx,−ny), (−nx, ny)〉 ± |(−nx, ny), (nx,−ny)〉]. (6.23)

By this simple assumption, Alice can now teleport the states in general form

|φ〉xy =

Nx∑

nx=−Nx(nx 6=0)

Ny∑

ny=−Ny(ny 6=0)

anxny |(nx, ny)〉 (6.24)

to Bob, which are representatives of states that result in two-dimensional wave
functions ψ(x, y) at large N ’s. Now, by insight obtained from one-dimensional
case, it is clear that two-dimensional position state teleportation is mathemat-
ically equivalent to one-dimensional case just with a larger (channel) Hilbert
space dimension, that is, N = NxNy.

6.9 Teleportation of the 3rd dimension using momentum basis

There is an intricacy in extension of the protocol for teleportation of three-
dimensional wave functions ψ(x, y, z). It does not seem trivial how to achieve
teleportation of three-dimensional objects, utilizing our planar receivers. To
overcome this problem, we use the fact that any quantum state |φ〉z can be
expanded in terms of the momentum basis as well as the position ones, that is

|φ〉z =
∑

z

cz |z〉 =
∑

p

bp|p〉. (6.25)

Thus, to teleport a state represented in the momentum basis we add another
property to our source, without any change in the form of our planar receivers.
Suppose that the emitted entangled particles from the source, can also get a
definite momentum whose value is p1, p2, . . . , pM with the same probability in
the z-direction. Fulfilling these properties for the source might be an experi-
mental challenge (for example, as a primary proposal in this regard, see [97]).
Anyway, the state of the system in this direction can be written as

|ϕ1〉z =
1√
2M

M∑

m=1

[|pm,−pm〉+ | − pm, pm〉]. (6.26)

Utilizing this source, Alice can send the most general states in the form

|φ〉z =

M∑

m=1

[bm|pm〉+ b−m| − pm〉] ≡
∑

p

bp|p〉. (6.27)

All teleportation processes of |φ〉z once again can be performed very similar
to the one-dimensional position state teleportation. In fact, it is sufficient to
consider the conversion |±n〉 ←→ |±pn〉 in all relations which we have obtained
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Fig. 6.3: Schematic drawing of the proposed theoretical set-up for teleporting the
quantum state of an object in our three-dimensional space. The initial state is
scanned by two approaching arrays of receivers which are properly connected
to Alice’s lab.

in the one-dimensional case. For example, similar to Eq. (6.3), the momentum
Bell bases can be represented as

|ϕ(q±,r)〉z =
1√
2M

M∑

m=1

[hr,2m−1|pm,±pfq(m)〉+ hr,2m| − pm,∓pfq(m)〉]

1 ≤ q ≤M, 1 ≤ r ≤ 2M (6.28)

where

fq(m) = (m+ q − 1)mod(M). (6.29)

6.10 Towards complete teleportation of a 3-dimensional object

Equipped with this novel kind of source, Alice is now able to teleport three-
dimensional states. Regarding the facts of the previous sections, it is sufficient
to consider x (as a representative of xy) and z components to explain function
of the protocol for three-dimensional case. Therefore, we consider general states
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like

|φ〉xz =
∑

x,z

cxz|φ〉x|φ〉z

=
∑

x,z

N,M∑

n,m=−N,−M(n,m 6=0)

cxzanxbmz|n〉x|pm〉z (6.30)

which Alice wishes to teleport. Here, the proposed teleportation set-up in
Fig. 6.1 should be changed a little so that the system (arrays+source) shown
in Fig. 6.3 can now describe the three-dimensional quantum state |ψ1〉x|ϕ1〉z .
Again, Alice combines her own particle with the scanned particle corresponding
to the state |φ〉xz. This combination can be represented as

|φ〉xz|ψ1〉x|ϕ1〉z =
1

4NM

∑

x,z

N∑

n=−N(n6=0)

M∑

m=−M(m 6=0)

cxzanxbmz

×
N,2N∑

k,j=1

|ψ(k±,j)〉xO′†
(k±,j)|n〉x

M,2M∑

q,r=1

|ϕ(q±,r)〉zT †
(q±,r)|pm〉z .

(6.31)

in which |ϕ(q±,r)〉z states are momentum analog of Bell bases |ψ(k±,j)〉x, and also
T(q±,r) operators work like momentum analog of O′

(k±,j) operators generated by

the replacement of |±n〉 ←→ |±pn〉 in Eq. (6.5). After performing two separate
BSM’s on the position and momentum bases of the two particles in the x and
z directions, respectively, the protocol is completed and one can obtain

|ψ(k±,j)〉x|ϕ(q±,r)〉z
∑

x,z,n,m

cxzanxbmzO
′†
(k±,j)T

†
(q±,r)|n〉x|pm〉z

= |ψ(k±,j)〉x|ϕ(q±,r)〉zO′†
(k±,j)T

†
(q±,r)|φ〉xz. (6.32)

Now Bob needs to know the classical information (k±, j) and (q±, r) via a clas-
sical channel in order to reconstruct the initial state |φ〉xz .

6.11 Examination on the realizability of the momentum gates

6.11.1 Momentum basic gates

Similar to the position basic gates introduced in the previous chapter, here, it is
also possible to consider some basic gates for the momentum space. Concerning
this, we have introduced the following operators

Pm| ± pm〉 = ±| ± pm〉
Rm| ± pm〉 = | ∓ pm〉
D+| ± pm〉 = | ± p(m+1)mod(M)

〉
(6.33)



6. A scheme towards complete state teleportation 78

+p

Spin-1 Target

Spin-1/2 Target

-p

+1/2

-1/2

+1
0

-1

S-Gate
CNOT, CNOT

CNOT CNOT

CNOT

CJ +
CJ +

CJ
CJ +

Reflector
   Gate

CNOT

Fig. 6.4: Schematic diagram of a reversal operator (R) in the momentum space.

in the momentum space which are called normalized momentum, reversal and
drift operators corresponding to Nn, Pm and L+ operators in the position space,
respectively. This correspondence helps one to use all the relations obtained up
to now for the position case, just by the following replacements:

| ± n〉 −→ | ± pm〉
Nn −→ Pm
Pn −→ Rm
L+ −→ D+. (6.34)

Anyway, again it is relevant to see question how one can conceive these
operators in practice. For Pm operator, it is clear that it acts like a phase factor
as follows:

Pm = eiθ(∓pm)π (6.35)

which works the same as Nn operator in the position space. However, the
design of the other operators is relatively different. For instance, R operator
can be considered to operate as Fig. 6.4 shows. In this scheme, in addition
to a spin- 1

2 target which controls the two reflector gates, we have introduced
a spin-1 target for controlling the two switch gates. It is assumed that, the
spin-1 target is initially adjusted in a fixed state, e.g. |0〉 ≡ |sz = −1〉. Each
quantum interaction between the particle passing through the channel and the
spin-1 particle results in a quantum rotation for the target’s particle in the spin
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Fig. 6.5: Schematic drawing of a filtering quantum circuit. If in the first quantum
interaction box t ≥ tm, where t is the time of interaction and tm = d/vm,
then the initial state of the lower spin- 1

2
target will change and the two related

S-gate will be turned ON. Moreover, if in the second quantum interaction
box t ≥ tm+1, then the initial state of the upper spin- 1

2
target will change

and its related S-gates will be turned ON. The G-gate can be considered any
desired local gate such as a phase shifter or the R operator.

space, which can be represented as

Jn+|j〉 = |j + n〉mod(3); j = 0, 1, 2 (6.36)

where J+ is a typical ladder operator in the spin space, |j〉 is the target’s spin
state and n shows number of the quantum interactions. Furthermore, CJ+

operators work in the sense that

CJ+|x, y〉 = |x, x + y〉mod(3)

CJ+|x, y〉 = |x, x + y〉mod(3) (6.37)

where x = 0, 1 and y = 0, 1, 2. Here, we have assumed that, if j = 0(1, 2), then
the two switch gates are turned OFF (ON), i.e., the main channels are open
(closed) and the side channels are closed (open). For the spin- 1

2 target, it is
also assumed that any change in the target’s initial spin state corresponds to
turning ON the reflector gate. If this gate is turned OFF, it permits particles
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Fig. 6.6: A typical scheme fo Dn
+ operator. In the first box from the right hand side,

the entering charged particle obtains some energy corresponding to an electric
field nEq. We have assumed that applying Eq changes pm to pm+1. Now, if
in the quantum interaction box t ≥ tM , where tM = d/vM and t is the time
of interaction between the particle and the spin- 1

2
target, then the initial

state of target will change, and consequently, the S-gate will be turned OFF.
Otherwise, the S-gate is turned ON and the opposite field EM acts as the
mod(M) function.

to pass, and if it is turned ON, then the particles are elastically reflected from
it.

So far, we have introduced just P and R operators. But in our scheme,
particularly in the reconstruction process, we need Pm and Rm operators which
should act just on the particles having the momentum pm. Thus, we should
design a quantum filtering circuit which leads only the particles with the mo-
mentum pm into the considered gate. Figure 6.5 shows such helpful circuit.
In this scheme, we have assumed that each quantum interaction between the
particle and the spin- 1

2 targets changes the target’s state only if the time of
interactions are taken long enough.

For the D+ operator, it is reasonable to consider that, for example, an elec-
tric field can easily control the momentum of charged particles. Meantime, it
should be noted that D+ operator has a cyclic behavior as shown in Eq. (6.33).
Therefore, a conceivable scheme for this operator can be considered as repre-
sented in Fig. 6.6.
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Fig. 6.7: Schematic diagram of a momentum controlled gate (MCR). If the scanned
particle has a momentum in the opposite of the z-direction, then it interacts
with the spin- 1

2
target and changes its initial state. This change results

turning OFF of the S-gates.

6.11.2 Momentum Bell state measurement

In the momentum space, we should also entangled the momentum of the two
particles and perform a BSM on them in the z-direction. The same as the grand
unitary operator Hx represented in Eq. (6.19), one can consider another grand
unitary operator in the momentum space to perform a BSM as follows:

Hp =
2M∑

r=1

M∑

q=1

|pr,±pf ′
q(r)
〉〈ϕ′

(q±,r)| (6.38)

where

|ϕ′
(q±,r)〉z =

1√
2M

2M∑

m=1

hr,m|pr,±pf ′
q(r)
〉 (6.39)

and

f ′
q(r) = (r + q − 1)mod(2M). (6.40)

We have seen that these grand unitary operators can be theoretically con-
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structed using our proposed conditional gates. Thus, here, we need to introduce
a general momentum controlled gate (MCR) which acts like

MCR|pl, pm〉 = θ(−pl)(I ⊗R)|pl, pm〉+ θ(pl)|pl, pm〉. (6.41)

Fortunately, for this operator we do not need any filtering process, because
the only important parameter is the direction of particle’s momentum. So, the
scheme of this gate, based on our introduced basic gates and side channels, can
be easily conceived as shown in Fig. 6.7.

From the previous chapter remember that, in the BSM we have used a
position Hadamard operator represented in Eq. (5.36). Here, we introduce the
same operator but in the momentum space, that is,

Hpm =
1√
2
(Rm + Pm). (6.42)

Since, similar to Eq. (5.41), these kinds of operators should be applied on all
pm’s, thus it is not necessary to consider any filtering process at this stage. So,
the circuit diagram of Hp1Hp2 . . . HpM operator can be shown as in Fig. 6.8.

pm

     R

     P

Fig. 6.8: Schematic diagram of a momentum Hadamard operator using two R and P
basic gates. Here, it is assumed that the probability of passing the particle
through the upper or lower channel is the same.

At the next stage, we need to design a quantum circuit for V(M) operator
which acts like U(N) operator introduced in Eq. (5.39), but in the momentum
space. Thus, we can represent it as

V(M) =
1√
M

M/2−1∑

m=0

{D2m
+ ⊗ [

M∏

i=1

R(hb,i−h2n+i,i)/2
i PiR(hb,i−hM−2m+i,i)/2

i ]D2m
+

+D2m+1
+ ⊗ [

M∏

i=1

(RiPiRiPi)(hb,i−hM−2m−1+i,i)/2]D2m+1
+ }.

(6.43)



6. A scheme towards complete state teleportation 83

 B(M-m+1)

 B(M-m+2)

 B(M-m+3)

      B(N)

      B(1)

      B(2)

C-Channels

n-thT-Channel
pm

m-1

m+1

M

2

1

  D+
(M-m)

  D+
(M-1)

D+
(M-m+2)

     D+

D+
(M-m+1)

  D+ D+
(M-m) D+

(M-m+1) D+
(M-m+2) D+

(M-1)
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Now, if we rewrite this operator as

V(M) =
1√
M

M−1∑

m=0

(Dm
+ ⊗B(m+1)D

m
+ ) (6.44)

then it would be possible to design theoretically a quantum circuit for this
operator, very similar to the one performed for U(N) operator in the previous
chapter. Figure 6.9 shows a conceivable quantum circuit of the V(M) operator
for just a typical T-channel, using the introduced momentum basic gates.

6.12 Conclusions

In conclusion, we have proposed a theoretical scheme which introduces N -level
position state teleportation of a particle having other degrees of freedom in
three-dimensional space. We have given representations for Bell states and nec-
essary unitary operators, using just symmetric normalized Hadamard matrices.
This scheme uses just one special EPR pair of particles and a planar quantum



6. A scheme towards complete state teleportation 84

scanner. Therefore, if realized, this scheme can be used to provide a complete
wave function teleportation of a particle including spin, ψS(x), at large N ’s,
for the first time. We have shown that an entangled position-spin state can
be teleported using an EPR pair entangled in position and spin variables sepa-
rately, without the need to assume any kind of entanglement between the two
variables in the source. By the way, as an advantage, the scheme needs only one
kind of mechanism for BSM in each spatial dimension. So our scheme can be
considered economically better than the original one, which needed two kinds
of measurement on position and momentum spaces per spatial dimension. Fur-
thermore, one can now think of moving towards understanding teleportation
of multi-particle objects, using EPR sources which only emit the constituent
particles of the object. Today, the technology for teleporting states of indi-
vidual atoms is at hand. For instance, the group led by Haroche [98] in Paris
has demonstrated entanglement of atoms. The entanglement of molecules and
then their teleportation may reasonably be expected within the next decades.
However, what happens beyond that, is anybody’s guess.



APPENDIX



A. A CLARIFICATION ON THE DEFINITION OF CENTER

OF MASS COORDINATE OF THE EPR PAIR

Here we want to show that the two different definitions for the center of mass
position of the two entangled particles, that is, y1−y2 in Eq. (2.1) and y1+y2 in
Eq. (2.13), are two consistent representations for the center of mass coordinate.

At first, Concerning the center of mass coordinate y1 − y2 represented in
Eq. (2.1), we can consider that

k1.y1 = |k1||y1|cos( ̂k1,y1) = ±|k1||y1|
k1.y2 = |k1||y2|cos( ̂k1,y2) = ±|k1||y2|. (A.1)

In addition, we should assume that cos( ̂k1,y1) = cos( ̂k1,y2). Because this
guarantees that one of the entangled particles moves into the positive and the
other one into the negative direction, which is a necessary constraint in the EPR
experiment.1 Then, the y component of Eq. (2.1) can be rewritten in a clearer
form, that is

ψ(y1, y2) =

∫
eik1.y1eik2.(y2+y0)δ(k1 + k2)dk1dk2

=

∫
eik1.y1e−ik1.(y2+y0)dk1

=

∫ +∞

−∞
eik1(|y1|−|y2|−|y0|)dk1 = 2πδ(|y1| − |y2| − |y0|)

(A.2)

where |y0| = |y1| − |y2| obviously represents the center of mass position of the
two particles (with a 1/2 factor) if either y1 > 0 and y2 < 0, or vice versa.
This means that it is possible to have simultaneous eigenfunctions for the total
momentum and the center of mass coordinate for the two entangled particles, as
was previously shown by Einstein et al. [20]. Now, It is proper to select y0 = 0.
Therefore, in Eq. (2.1), y1 − y2 really represents |y1| − |y2| which is clearly the
center of mass coordinate. These arguments are also completely consistent with
the common realization of the EPR experiment.

1 It is well known that a plane wave with representation eikx goes out from the origin
of coordinate while e−ikx goes into the origin. When the two particles of an EPR pair are
considered at the one side of the origin on the x-axis, one of them goes away from the origin
and another approaches to it. On the other hand, if the origin is considered between the two
entangled particles, then the two particles either go away from the origin or go into it.
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On the other hand, in Eq. (2.5) and consequently in Eqs. (2.13) and (2.30),
the y parameters are variables or vectors in one dimension, not absolute values.
Thus, in these equations, y1 + y2≡y1(t) + y2(t) naturally represents the center
of mass coordinate of the two particles. Again, one can show that having si-
multaneous eigenfunction for the total momentum py1

+ py2
and the center of

mass position y1 + y2 for the two entangled particles is feasible. To see this,
consider the following properties of our considered particles

py1
= py1 ĵ, py2

= py2 ĵ = −py1 ĵ
y1 = y1ĵ, y2 = −y2ĵ (A.3)

where similar to the EPR’s wave function the center of mass position is repre-
sented by y1 + y2 = (y1 − y2)ĵ, in which the values of y1 and y2 have the same
signs. Now, it is easy to show that

[py1
+ py2

,y1 + y2] = [py1 + py2 , y1 − y2] = 0 (A.4)

which means it is possible to determine the total momentum and the center of
mass coordinate, simultaneously, for the two entangled particles.



B. DETAILS ON PREPARING AND MEASURING

PROCESSES FOR SOME INITIAL CASES

In this appendix, we have presented some details on preparing (encoding) and
measuring (decoding) processes in the dense coding scheme introduced in Chap-
ter 3 for N = 1, 2, 4, 8 and 12 special cases in order to clarify the procedure of
obtaining some relatively complex relations. The explicit forms of the encod-
ing and decoding operators represented in the text using the basic gates, are
principally generalizations of the following calculations.

For the N = 1 case, there are four mutually entangled orthogonal states as

|ψ(1)
1,2〉 =

1√
2
[|1,−1〉 ± | − 1, 1〉] (B.1)

|ψ(1)
3,4〉 =

1√
2
[|1, 1〉 ± | − 1,−1〉] (B.2)

where all required processes are clearly very similar to what can be done for
the well known system of two spin- 1

2 particles. The preparation and measuring
processes for this case are summarized in Tables B.1 and B.2, respectively,

Tab. B.1: Alice’s preparation process for N = 1.
Transformation New state

(I ⊗ I)|ψ
(1)
1 〉 |ψ

(1)
1 〉

(N1Is ⊗ I)|ψ
(1)
1 〉 |ψ

(1)
2 〉

(P1Is ⊗ I)|ψ
(1)
1 〉 |ψ

(1)
3 〉

(N1P1Is ⊗ I)|ψ
(1)
1 〉 |ψ

(1)
4 〉

Tab. B.2: Bob’s measurement process for N = 1.
Initial state PCS Hx1 ⊗ I Renamed

|ψ
(1)
1 〉 1

2
(|1〉 + | − 1〉)| − 1〉 |1,−1〉 01

|ψ
(1)
2 〉 1

2
(|1〉 − | − 1〉)| − 1〉 | − 1,−1〉 11

|ψ
(1)
3 〉 1

2
(|1〉 + | − 1〉)|1〉 |1, 1〉 00

|ψ
(1)
4 〉 1

2
(|1〉 − | − 1〉)|1〉 | − 1, 1〉 10

where we have applied the renaming convention

|n〉 ≡ 0, | − n〉 ≡ 1 (B.3)
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in the last column of Tab. B.2.
For the N = 2 case, we have 16 entangled orthonormal spatial states as

follows: which form our Bell basis in the N = 2 case. Now, it is proper to

Tab. B.3: entangled orthonormal position states for N = 2.

|ψ(2)
1,2〉 = 1

2 [(|1,−1〉 ± | − 1, 1〉) + (|2,−2〉 ± | − 2, 2〉)]
|ψ(2)

3,4〉 = 1
2 [(|1,−1〉 ± | − 1, 1〉)− (|2,−2〉 ± | − 2, 2〉)]

|ψ(2)
5,6〉 = 1

2 [(|1, 1〉 ± | − 1,−1〉) + (|2, 2〉 ± | − 2,−2〉)]
|ψ(2)

7,8〉 = 1
2 [(|1, 1〉 ± | − 1,−1〉)− (|2, 2〉 ± | − 2,−2〉)]

|ψ(2)
9,10〉 = 1

2 [(|2,−1〉 ± | − 2, 1〉) + (|1,−2〉 ± | − 1, 2〉)]
|ψ(2)

11,12〉 = 1
2 [(|2,−1〉 ± | − 2, 1〉)− (|1,−2〉 ± | − 1, 2〉)]

|ψ(2)
13,14〉 = 1

2 [(|2, 1〉 ± | − 2,−1〉) + (|1, 2〉 ± | − 1,−2〉)]
|ψ(2)

15,16〉 = 1
2 [(|2, 1〉 ± | − 2,−1〉)− (|1, 2〉 ± | − 1,−2〉)]

introduce the notion of family of states. By a family we mean sets of states
which share the same kets in their structure and at most differ in their signs. So
in Tab. B.3, four families can be distinguished. Tables B.4 and B.5 illustrate
all preparation processes that can be selected and done by Alice, and also Bob’s
measurement process, for each family, respectively. In Tab. B.5 it is seen what

Tab. B.4: Alice’s preparation process for N = 2.
Transformation New state

(I ⊗ I)|ψ
(2)
1 〉 |ψ

(2)
1 〉

(N1N2 ⊗ I)|ψ
(2)
1 〉 |ψ

(2)
2 〉

(P2N2P2N2 ⊗ I)|ψ
(2)
1 〉 |ψ

(2)
3 〉

(P2N1N2P2 ⊗ I)|ψ
(2)
1 〉 |ψ

(2)
4 〉

(P1P2 ⊗ I)|ψ
(2)
1 〉 |ψ

(2)
5 〉

(N1N2P1P2 ⊗ I)|ψ
(2)
1 〉 |ψ

(2)
6 〉

(N2P1P2N2 ⊗ I)|ψ
(2)
1 〉 |ψ

(2)
7 〉

(N1P1P2N2 ⊗ I)|ψ
(2)
1 〉 |ψ

(2)
8 〉

(L+ ⊗ I)|ψ
(2)
1 〉 |ψ

(2)
9 〉

(N1N2L+ ⊗ I)|ψ
(2)
1 〉 |ψ

(2)
10 〉

(P2N2P2N2L+ ⊗ I)|ψ
(2)
1 〉 |ψ

(2)
11 〉

(P2N1N2P2L+ ⊗ I)|ψ
(2)
1 〉 |ψ

(2)
12 〉

(P1P2L+ ⊗ I)|ψ
(2)
1 〉 |ψ

(2)
13 〉

(N1N2P1P2L+ ⊗ I)|ψ
(2)
1 〉 |ψ

(2)
14 〉

(N2P1P2N2L+ ⊗ I)|ψ
(2)
1 〉 |ψ

(2)
15 〉

(N1P1P2N2L+ ⊗ I)|ψ
(2)
1 〉 |ψ

(2)
16 〉

differs from the N = 1 case is that applying just Hx1Hx2 does not produce Bob’s
desired orthonormal spatial states. Therefore, we have applied a new unitary
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Tab. B.5: Bob’s measurement process for N = 2

Initial state PCS Hx1Hx2 ⊗ I U(2) Renamed

|ψ(2)
1

〉 1
2
[(|1〉 + | − 1〉)| − 1〉 + (|2〉 + | − 2〉)| − 2〉] 1√

2
[|1,−1〉 + |2,−2〉] |1,−1〉 0⊔1⊔

|ψ(2)
2

〉 1
2
[(|1〉 − | − 1〉)| − 1〉 + (|2〉 − | − 2〉)| − 2〉] 1√

2
[| − 1,−1〉 + | − 2,−2〉] | − 1,−1〉 1⊔1⊔

|ψ(2)
3

〉 1
2
[(|1〉 + | − 1〉)| − 1〉 − (|2〉 + | − 2〉)| − 2〉] 1√

2
[|1,−1〉 − |2,−2〉] |2,−2〉 ⊔0⊔1

|ψ(2)
4

〉 1
2
[(|1〉 − | − 1〉)| − 1〉 − (|2〉 − | − 2〉)| − 2〉] 1√

2
[| − 1,−1〉 − | − 2,−2〉] | − 2,−2〉 ⊔1⊔1

|ψ(2)
5

〉 1
2
[(|1〉 + | − 1〉)|1〉 + (|2〉 + | − 2〉)|2〉] 1√

2
[|1, 1〉 + |2, 2〉] |2, 2〉 ⊔0⊔0

|ψ(2)
6

〉 1
2
[(|1〉 − | − 1〉)|1〉 + (|2〉 − | − 2〉)|2〉] 1√

2
[| − 1, 1〉 + | − 2, 2〉] | − 2, 2〉 ⊔1⊔0

|ψ(2)
7

〉 1
2
[(|1〉 + | − 1〉)|1〉 − (|2〉 + | − 2〉)|2〉] 1√

2
[|1, 1〉 − |2, 2〉] |1, 1〉 0⊔0⊔

|ψ(2)
8

〉 1
2
[(|1〉 − | − 1〉)|1〉 − (|2〉 − | − 2〉)|2〉] 1√

2
[| − 1, 1〉 − | − 2, 2〉] | − 1, 1〉 1⊔0⊔

|ψ(2)
9

〉 1
2
[(|1〉 + | − 1〉)| − 2〉 + (|2〉 + | − 2〉)| − 1〉] 1√

2
[|2,−1〉 + |1,−2〉] |2,−1〉 ⊔01⊔

|ψ(2)
10

〉 1
2
[(|1〉 − | − 1〉)| − 2〉 + (|2〉 − | − 2〉)| − 1〉] 1√

2
[| − 2,−1〉 + | − 1,−2〉] | − 2,−1〉 ⊔11⊔

|ψ(2)
11

〉 1
2
[(|1〉 + | − 1〉)| − 2〉 − (|2〉 + | − 2〉)| − 1〉] 1√

2
[|2,−1〉 − |1,−2〉] |1,−2〉 0⊔⊔1

|ψ(2)
12

〉 1
2
[(|1〉 − | − 1〉)| − 2〉 − (|2〉 − | − 2〉)| − 1〉] 1√

2
[| − 2,−1〉 − | − 1,−2〉] | − 1,−2〉 1⊔⊔1

|ψ(2)
13

〉 1
2
[(|1〉 + | − 1〉)|2〉 + (|2〉 + | − 2〉)|1〉] 1√

2
[|2, 1〉 + |1, 2〉] |1, 2〉 0⊔⊔0

|ψ(2)
14

〉 1
2
[(|1〉 − | − 1〉)|2〉 + (|2〉 − | − 2〉)|1〉] 1√

2
[| − 2, 1〉 + | − 1, 2〉] | − 1, 2〉 1⊔⊔0

|ψ(2)
15

〉 1
2
[(|1〉 + | − 1〉)|2〉 − (|2〉 + | − 2〉)|1〉] 1√

2
[|2, 1〉 − |1, 2〉] |2, 1〉 ⊔00⊔

|ψ(2)
16

〉 1
2
[(|1〉 − | − 1〉)|2〉 − (|2〉 − | − 2〉)|1〉] 1√

2
[| − 2, 1〉 − | − 1, 2〉] | − 2, 1〉 ⊔10⊔

operator in the form

U(2) =
1√
2
[(I ⊗ P1N1N2P1) + (L+ ⊗ L+)] (B.4)

which transforms the processed orthonormal states to the spatial bases which
are manageable by Bob. Furthermore, in the last column of Tab. B.5, the
following renaming convention is added to the previous one in Eq. (B.3). At
first, according to Fig. B.1, Bob prepares a sequence of blank spaces the number
of which is equal to his receivers, that is, 2N . Now, the first half of these spaces
belong to the particle received from Alice and the second half belong to his own
particle. Then, he observes the outcomes of all C-channels. If one of them,
e.g. i-th C-channel, is ON (i ∈ (−N, . . . , N)), he fills the |i|−th space with 1
or 0, according to Eq. (B.3), otherwise all the remaining spaces are left blank;
⊔. Then, he scans all T-channels and in the same manner he fills one of the
blank spaces. Finally, Bob obtains a 2N character strip which obtains 2 digits
including 0 and/or 1 as well as (2N − 2) ⊔’s.

At the next stage, it is natural to consider the N = 3 case. Here, one may
expect that the foregoing mechanism works for this case, too. As we have seen,
the first step is to find all entangled orthonormal states, like Eq. (B.3). At the
first glance, one may consider

|ψ(3)
1,2〉 =

1√
6
[(|1,−1〉 ± | − 1, 1〉) + (|2,−2〉 ± | − 2, 2〉) + (|3,−3〉 ± | − 3, 3〉)]

(B.5)

as examples of two entangled orthonormal states of a family. But, the number of
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 Alice's blank spaces Bob's blank spaces

1  2  3  N  1  2  3   N Alice's spin

Bob's spin

Fig. B.1: Initial (OFF) state of Bob’s detector.

sets of parenthesis, i.e. ( ), in them is odd, so that constructing more entangled
orthonormal states for this family, by permuting ± signs, is impossible. So, it is
seen that there is not any other member for it. This means that the size of this
family is smaller than the case of N = 2, in Tab. B.3. Thus, we do not have
sufficient entangled orthonormal states to perform, say, dense coding process
in this case. In other words, we only have 12 entangled orthonormal position
states. A similar argumentation also works for the case of odd N .

For the next case, consider N = 4. All of the 64 entangled orthonormal
position states, classified in 8 families, are listed in Tab. B.6. Now, Alice can
apply proper combinations of the basic gates on her particle to produce other
members of the Bell bases. Table B.7 shows all preparation that can be selected
and performed by Alice for each family. After receiving Alice’s processed particle
by Bob, he perform a BSM on the two particle, as is concisely shown in Tab. B.8.
In this case, the last unitary operator for BSM can be considered like

U(4) = 1√
4

[I ⊗ P1P4N1N2N3N4P1P4 + L+ ⊗ P4N4P4N4L+

+ L2
+ ⊗ P1P3N1N2N3N4P1P3L

2
+ + L3

+ ⊗ P3N3P3N3L
3
+].

(B.6)

Now, consider the N = 6 case. Again, at first glance, it seems that a similar
procedure works for this case. Thus, imagine that one has succeeded to perform
the protocol and produce a set of final entangled orthonormal states from a
complete set of initial entangled orthonormal states (Bell bases). Among them,
there should be a state like

1√
6
(|1, 1〉+ |2, 2〉+ |3, 3〉+ |4, 4〉+ |5, 5〉+ |6, 6〉). (B.7)

The first obvious entangled state which is orthogonal to this state can be
considered to be

1√
6
(|1, 1〉 − |2, 2〉+ |3, 3〉 − |4, 4〉+ |5, 5〉 − |6, 6〉). (B.8)

But, it can be tested that no other states of this family, formed by changing kets’
signs, may be found which are orthogonal to both of them, simultaneously. So,
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Tab. B.6: Entangled orthogonal position states for N = 4.

|ψ(4)
1,2

〉 = 1√
8
[(|1,−1〉 ± | − 1, 1〉) + (|2,−2〉 ± | − 2, 2〉) + (|3,−3〉 ± | − 3, 3〉) + (|4,−4〉 ± | − 4, 4〉)]

|ψ(4)
3,4

〉 = 1√
8
[(|1,−1〉 ± | − 1, 1〉) − (|2,−2〉 ± | − 2, 2〉) − (|3,−3〉 ± | − 3, 3〉) + (|4,−4〉 ± | − 4, 4〉)]

|ψ(4)
5,6

〉 = 1√
8
[(|1,−1〉 ± | − 1, 1〉) − (|2,−2〉 ± | − 2, 2〉) + (|3,−3〉 ± | − 3, 3〉) − (|4,−4〉 ± | − 4, 4〉)]

|ψ(4)
7,8

〉 = 1√
8
[(|1,−1〉 ± | − 1, 1〉) + (|2,−2〉 ± | − 2, 2〉) − (|3,−3〉 ± | − 3, 3〉) − (|4,−4〉 ± | − 4, 4〉)]

|ψ(4)
9,10

〉 = 1√
8
[(|1, 1〉 ± | − 1,−1〉) + (|2, 2〉 ± | − 2,−2〉) + (|3, 3〉 ± | − 3,−3〉) + (|4, 4〉 ± | − 4,−4〉)]

|ψ(4)
11,12

〉 = 1√
8
[(|1, 1〉 ± | − 1,−1〉) − (|2, 2〉 ± | − 2,−2〉) − (|3, 3〉 ± | − 3,−3〉) + (|4, 4〉 ± | − 4,−4〉)]

|ψ(4)
13,14

〉 = 1√
8
[(|1, 1〉 ± | − 1,−1〉) − (|2, 2〉 ± | − 2,−2〉) + (|3, 3〉 ± | − 3,−3〉) − (|4, 4〉 ± | − 4,−4〉)]

|ψ(4)
15,16

〉 = 1√
8
[(|1, 1〉 ± | − 1,−1〉) + (|2, 2〉 ± | − 2,−2〉) − (|3, 3〉 ± | − 3,−3〉) − (|4, 4〉 ± | − 4,−4〉)]

|ψ(4)
17,18

〉 = 1√
8
[(|1,−2〉 ± | − 1, 2〉) + (|2,−3〉 ± | − 2, 3〉) + (|3,−4〉 ± | − 3, 4〉) + (|4,−1〉 ± | − 4, 1〉)]

|ψ(4)
19,20

〉 = 1√
8
[(|1,−2〉 ± | − 1, 2〉) − (|2,−3〉 ± | − 2, 3〉) − (|3,−4〉 ± | − 3, 4〉) + (|4,−1〉 ± | − 4, 1〉)]

|ψ(4)
21,22

〉 = 1√
8
[(|1,−2〉 ± | − 1, 2〉) − (|2,−3〉 ± | − 2, 3〉) + (|3,−4〉 ± | − 3, 4〉) − (|4,−1〉 ± | − 4, 1〉)]

|ψ(4)
23,24

〉 = 1√
8
[(|1,−2〉 ± | − 1, 2〉) + (|2,−3〉 ± | − 2, 3〉) − (|3,−4〉 ± | − 3, 4〉) − (|4,−1〉 ± | − 4, 1〉)]

|ψ(4)
25,26

〉 = 1√
8
[(|1, 2〉 ± | − 1,−2〉) + (|2, 3〉 ± | − 2,−3〉) + (|3, 4〉 ± | − 3,−4〉) + (|4, 1〉 ± | − 4,−1〉)]

|ψ(4)
27,28

〉 = 1√
8
[(|1, 2〉 ± | − 1,−2〉) − (|2, 3〉 ± | − 2,−3〉) − (|3, 4〉 ± | − 3,−4〉) + (|4, 1〉 ± | − 4,−1〉)]

|ψ(4)
29,30

〉 = 1√
8
[(|1, 2〉 ± | − 1,−2〉) − (|2, 3〉 ± | − 2,−3〉) + (|3, 4〉 ± | − 3,−4〉) − (|4, 1〉 ± | − 4,−1〉)]

|ψ(4)
31,32

〉 = 1√
8
[(|1, 2〉 ± | − 1,−2〉) + (|2, 3〉 ± | − 2,−3〉) − (|3, 4〉 ± | − 3,−4〉) − (|4, 1〉 ± | − 4,−1〉)]

|ψ(4)
33,34

〉 = 1√
8
[(|1,−3〉 ± | − 1, 3〉) + (|2,−4〉 ± | − 2, 4〉) + (|3,−1〉 ± | − 3, 1〉) + (|4,−2〉 ± | − 4, 2〉)]

|ψ(4)
35,36

〉 = 1√
8
[(|1,−3〉 ± | − 1, 3〉) − (|2,−4〉 ± | − 2, 4〉) − (|3,−1〉 ± | − 3, 1〉) + (|4,−2〉 ± | − 4, 2〉)]

|ψ(4)
37,38

〉 = 1√
8
[(|1,−3〉 ± | − 1, 3〉) − (|2,−4〉 ± | − 2, 4〉) + (|3,−1〉 ± | − 3, 1〉) − (|4,−2〉 ± | − 4, 2〉)]

|ψ(4)
39,40

〉 = 1√
8
[(|1,−3〉 ± | − 1, 3〉) + (|2,−4〉 ± | − 2, 4〉) − (|3,−1〉 ± | − 3, 1〉) − (|4,−2〉 ± | − 4, 2〉)]

|ψ(4)
41,42

〉 = 1√
8
[(|1, 3〉 ± | − 1,−3〉) + (|2, 4〉 ± | − 2,−4〉) + (|3, 1〉 ± | − 3,−1〉) + (|4, 2〉 ± | − 4,−2〉)]

|ψ(4)
43,44

〉 = 1√
8
[(|1, 3〉 ± | − 1,−3〉) − (|2, 4〉 ± | − 2,−4〉) − (|3, 1〉 ± | − 3,−1〉) + (|4, 2〉 ± | − 4,−2〉)]

|ψ(4)
45,46

〉 = 1√
8
[(|1, 3〉 ± | − 1,−3〉) − (|2, 4〉 ± | − 2,−4〉) + (|3, 1〉 ± | − 3,−1〉) − (|4, 2〉 ± | − 4,−2〉)]

|ψ(4)
47,48

〉 = 1√
8
[(|1, 3〉 ± | − 1,−3〉) + (|2, 4〉 ± | − 2,−4〉) − (|3, 1〉 ± | − 3,−1〉) − (|4, 2〉 ± | − 4,−2〉)]

|ψ(4)
49,50

〉 = 1√
8
[(|1,−4〉 ± | − 1, 4〉) + (|2,−1〉 ± | − 2, 1〉) + (|3,−2〉 ± | − 3, 2〉) + (|4,−3〉 ± | − 4, 3〉)]

|ψ(4)
51,52

〉 = 1√
8
[(|1,−4〉 ± | − 1, 4〉) − (|2,−1〉 ± | − 2, 1〉) − (|3,−2〉 ± | − 3, 2〉) + (|4,−3〉 ± | − 4, 3〉)]

|ψ(4)
53,54

〉 = 1√
8
[(|1,−4〉 ± | − 1, 4〉) − (|2,−1〉 ± | − 2, 1〉) + (|3,−2〉 ± | − 3, 2〉) − (|4,−3〉 ± | − 4, 3〉)]

|ψ(4)
55,56

〉 = 1√
8
[(|1,−4〉 ± | − 1, 4〉) + (|2,−1〉 ± | − 2, 1〉) − (|3,−2〉 ± | − 3, 2〉) − (|4,−3〉 ± | − 4, 3〉)]

|ψ(4)
57,58

〉 = 1√
8
[(|1, 4〉 ± | − 1,−4〉) + (|2, 1〉 ± | − 2,−1〉) + (|3, 2〉 ± | − 3,−2〉) + (|4, 3〉 ± | − 4,−3〉)]

|ψ(4)
59,60

〉 = 1√
8
[(|1, 4〉 ± | − 1,−4〉) − (|2, 1〉 ± | − 2,−1〉) − (|3, 2〉 ± | − 3,−2〉) + (|4, 3〉 ± | − 4,−3〉)]

|ψ(4)
61,62

〉 = 1√
8
[(|1, 4〉 ± | − 1,−4〉) − (|2, 1〉 ± | − 2,−1〉) + (|3, 2〉 ± | − 3,−2〉) − (|4, 3〉 ± | − 4,−3〉)]

|ψ(4)
63,64

〉 = 1√
8
[(|1, 4〉 ± | − 1,−4〉) + (|2, 1〉 ± | − 2,−1〉) − (|3, 2〉 ± | − 3,−2〉) − (|4, 3〉 ± | − 4,−3〉)]
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Tab. B.7: Alice’s preparation process for N = 4.
Transformation New state

(I ⊗ I)|ψ(4)
1

〉 |ψ(4)
1

〉

(N1N2N3N4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
2

〉

(P2N2P2N2P3N3P3N3 ⊗ I)|ψ(4)
1

〉 |ψ(4)
3

〉

(N1N4P2N2P2P3N3P3 ⊗ I)|ψ(4)
1

〉 |ψ(4)
4

〉

(P2N2P2N2P4N4P4N4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
5

〉

(N1N3P2N2P2P4N4P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
6

〉

(P3N3P3N3P4N4P4N4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
7

〉

(N1N2P3N3P3P4N4P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
8

〉

(P1P2P3P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
9

〉

(N1N2N3N4P1P2P3P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
10

〉

(P2N2P2N2P3N3P3N3P1P2P3P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
11

〉

(N1N4P2N2P2P3N3P3P1P2P3P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
12

〉

(P2N2P2N2P4N4P4N4P1P2P3P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
13

〉

(N1N3P2N2P2P4N4P4P1P2P3P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
14

〉

(P3N3P3N3P4N4P4N4P1P2P3P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
15

〉

(N1N2P3N3P3P4N4P4P1P2P3P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
16

〉

(L3
+

⊗ I)|ψ(4)
1

〉 |ψ(4)
17

〉

(N1N2N3N4L
3
+

⊗ I)|ψ(4)
1

〉 |ψ(4)
18

〉

(P2N2P2N2P3N3P3N3L
3
+

⊗ I)|ψ(4)
1

〉 |ψ(4)
19

〉

(N1N4P2N2P2P3N3P3L
3
+

⊗ I)|ψ(4)
1

〉 |ψ(4)
20

〉

(P2N2P2N2P4N4P4N4L
3
+

⊗ I)|ψ(4)
1

〉 |ψ(4)
21

〉

(N1N3P2N2P2P4N4P4L
3
+

⊗ I)|ψ(4)
1

〉 |ψ(4)
22

〉

(P3N3P3N3P4N4P4N4L
3
+

⊗ I)|ψ(4)
1

〉 |ψ(4)
23

〉

(N1N2P3N3P3P4N4P4L
3
+

⊗ I)|ψ(4)
1

〉 |ψ(4)
24

〉

(L3
+
P1P2P3P4 ⊗ I)|ψ(4)

1
〉 |ψ(4)

25
〉

(N1N2N3N4L
3
+
P1P2P3P4 ⊗ I)|ψ(4)

1
〉 |ψ(4)

26
〉

(P2N2P2N2P3N3P3N3L
3
+
P1P2P3P4 ⊗ I)|ψ(4)

1
〉 |ψ(4)

27
〉

(N1N4P2N2P2P3N3P3L
3
+
P1P2P3P4 ⊗ I)|ψ(4)

1
〉 |ψ(4)

28
〉

(P2N2P2N2P4N4P4N4L
3
+
P1P2P3P4 ⊗ I)|ψ(4)

1
〉 |ψ(4)

29
〉

(N1N3P2N2P2P4N4P4L
3
+
P1P2P3P4 ⊗ I)|ψ(4)

1
〉 |ψ(4)

30
〉

(P3N3P3N3P4N4P4N4L
3
+
P1P2P3P4 ⊗ I)|ψ(4)

1
〉 |ψ(4)

31
〉

(N1N2P3N3P3P4N4P4L
3
+
P1P2P3P4 ⊗ I)|ψ(4)

1
〉 |ψ(4)

32
〉

(L2
+

⊗ I)|ψ(4)
1

〉 |ψ(4)
33

〉

(N1N2N3N4L
2
+

⊗ I)|ψ(4)
1

〉 |ψ(4)
34

〉

(P2N2P2N2P3N3P3N3L
2
+

⊗ I)|ψ(4)
1

〉 |ψ(4)
35

〉

(N1N4P2N2P2P3N3P3L
2
+

⊗ I)|ψ(4)
1

〉 |ψ(4)
36

〉

(P2N2P2N2P4N4P4N4L
2
+

⊗ I)|ψ(4)
1

〉 |ψ(4)
37

〉

(N1N3P2N2P2P4N4P4L
2
+

⊗ I)|ψ(4)
1

〉 |ψ(4)
38

〉

(P3N3P3N3P4N4P4N4L
2
+

⊗ I)|ψ(4)
1

〉 |ψ(4)
39

〉

(N1N2P3N3P3P4N4P4L
2
+

⊗ I)|ψ(4)
1

〉 |ψ(4)
40

〉

(L2
+
P1P2P3P4 ⊗ I)|ψ(4)

1
〉 |ψ(4)

41
〉

(N1N2N3N4L
2
+
P1P2P3P4 ⊗ I)|ψ(4)

1
〉 |ψ(4)

42
〉

(P2N2P2N2P3N3P3N3L
2
+
P1P2P3P4 ⊗ I)|ψ(4)

1
〉 |ψ(4)

43
〉

(N1N4P2N2P2P3N3P3L
2
+
P1P2P3P4 ⊗ I)|ψ(4)

1
〉 |ψ(4)

44
〉

(P2N2P2N2P4N4P4N4L
2
+
P1P2P3P4 ⊗ I)|ψ(4)

1
〉 |ψ(4)

45
〉

(N1N3P2N2P2P4N4P4L
2
+
P1P2P3P4 ⊗ I)|ψ(4)

1
〉 |ψ(4)

46
〉

(P3N3P3N3P4N4P4N4L
2
+
P1P2P3P4 ⊗ I)|ψ(4)

1
〉 |ψ(4)

47
〉

(N1N2P3N3P3P4N4P4L
2
+
P1P2P3P4 ⊗ I)|ψ(4)

1
〉 |ψ(4)

48
〉

(L+ ⊗ I)|ψ(4)
1

〉 |ψ(4)
49

〉

(N1N2N3N4L+ ⊗ I)|ψ(4)
1

〉 |ψ(4)
50

〉

(P2N2P2N2P3N3P3N3L+ ⊗ I)|ψ(4)
1

〉 |ψ(4)
51

〉

(N1N4P2N2P2P3N3P3L+ ⊗ I)|ψ(4)
1

〉 |ψ(4)
52

〉

(P2N2P2N2P4N4P4N4L+ ⊗ I)|ψ(4)
1

〉 |ψ(4)
53

〉

(N1N3P2N2P2P4N4P4L+ ⊗ I)|ψ(4)
1

〉 |ψ(4)
54

〉

(P3N3P3N3P4N4P4N4L+ ⊗ I)|ψ(4)
1

〉 |ψ(4)
55

〉

(N1N2P3N3P3P4N4P4L+ ⊗ I)|ψ(4)
1

〉 |ψ(4)
56

〉

(L+P1P2P3P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
57

〉

(N1N2N3N4L+P1P2P3P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
58

〉

(P2N2P2N2P3N3P3N3L+P1P2P3P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
59

〉

(N1N4P2N2P2P3N3P3L+P1P2P3P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
60

〉

(P2N2P2N2P4N4P4N4L+P1P2P3P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
61

〉

(N1N3P2N2P2P4N4P4L+P1P2P3P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
62

〉

(P3N3P3N3P4N4P4N4L+P1P2P3P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
63

〉

(N1N2P3N3P3P4N4P4L+P1P2P3P4 ⊗ I)|ψ(4)
1

〉 |ψ(4)
64

〉
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Tab. B.8: Bob’s measurement process for N = 4.
Initial state (Hx1Hx2Hx3Hx4 ⊗ I)PCS U(4) Renamed

|ψ(4)
1

〉
x

1
2
[|1,−1〉 + |2,−2〉 + |3,−3〉 + |4,−4〉] |1,−1〉 0 ⊔ ⊔ ⊔ 1 ⊔ ⊔⊔

|ψ(4)
2

〉
x

1
2
[| − 1,−1〉 + | − 2,−2〉 + | − 3,−3〉 + | − 4,−4〉] | − 1,−1〉 1 ⊔ ⊔ ⊔ 1 ⊔ ⊔⊔

|ψ(4)
3

〉
x

1
2
[|1,−1〉 − |2,−2〉 − |3,−3〉 + |4,−4〉] |4,−4〉 ⊔ ⊔ ⊔0 ⊔ ⊔ ⊔ 1

|ψ(4)
4

〉
x

1
2
[| − 1,−1〉 − | − 2,−2〉 − | − 3,−3〉 + | − 4,−4〉] | − 4,−4〉 ⊔ ⊔ ⊔1 ⊔ ⊔ ⊔ 1

|ψ(4)
5

〉
x

1
2
[|1,−1〉 − |2,−2〉 + |3,−3〉 − |4,−4〉] |2,−2〉 ⊔0 ⊔ ⊔ ⊔ 1 ⊔ ⊔

|ψ(4)
6

〉
x

1
2
[| − 1−, 1〉 − | − 2,−2〉 + | − 3,−3〉 − | − 4,−4〉] | − 2,−2〉 ⊔1 ⊔ ⊔ ⊔ 1 ⊔ ⊔

|ψ(4)
7

〉
x

1
2
[|1,−1〉 + |2,−2〉 − |3,−3〉 − |4,−4〉] |3,−3〉 ⊔ ⊔ 0 ⊔ ⊔ ⊔ 1⊔

|ψ(4)
8

〉
x

1
2
[| − 1,−1〉 + | − 2,−2〉 − | − 3,−3〉 − | − 4,−4〉] | − 3,−3〉 ⊔ ⊔ 1 ⊔ ⊔ ⊔ 1⊔

|ψ(4)
9

〉
x

1
2
[|1, 1〉 + |2, 2〉 + |3, 3〉 + |4, 4〉] |2, 2〉 ⊔0 ⊔ ⊔ ⊔ 0 ⊔ ⊔

|ψ(4)
10

〉
x

1
2
[| − 1, 1〉 + | − 2, 2〉 + | − 3, 3〉 + | − 4, 4〉] | − 2, 2〉 ⊔1 ⊔ ⊔ ⊔ 0 ⊔ ⊔

|ψ(4)
11

〉
x

1
2
[|1, 1〉 − |2, 2〉 − |3, 3〉 + |4, 4〉] |3, 3〉 ⊔ ⊔ 0 ⊔ ⊔ ⊔ 0⊔

|ψ(4)
12

〉
x

1
2
[| − 1, 1〉 − | − 2, 2〉 − | − 3, 3〉 + | − 4, 4〉] | − 3, 3〉 ⊔ ⊔ 1 ⊔ ⊔ ⊔ 0⊔

|ψ(4)
13

〉
x

1
2
[|1, 1〉 − |2, 2〉 + |3, 3〉 − |4, 4〉] |1, 1〉 0 ⊔ ⊔ ⊔ 0 ⊔ ⊔⊔

|ψ(4)
14

〉
x

1
2
[| − 1, 1〉 − | − 2, 2〉 + | − 3, 3〉 − | − 4, 4〉] | − 1, 1〉 1 ⊔ ⊔ ⊔ 0 ⊔ ⊔⊔

|ψ(4)
15

〉
x

1
2
[|1, 1〉 + |2, 2〉 − |3, 3〉 − |4, 4〉] |4, 4〉 ⊔ ⊔ ⊔0 ⊔ ⊔ ⊔ 0

|ψ(4)
16

〉
x

1
2
[| − 1, 1〉 + | − 2, 2〉 − | − 3, 3〉 − | − 4, 4〉] | − 4, 4〉 ⊔ ⊔ ⊔1 ⊔ ⊔ ⊔ 0

|ψ(4)
17

〉
x

1
2
[|1,−2〉 + |2,−3〉 + |3,−4〉 + |4,−1〉] |4,−1〉 ⊔ ⊔ ⊔01 ⊔ ⊔⊔

|ψ(4)
18

〉
x

1
2
[| − 1,−2〉 + | − 2,−3〉 + | − 3,−4〉 + | − 4,−1〉] | − 4,−1〉 ⊔ ⊔ ⊔11 ⊔ ⊔⊔

|ψ(4)
19

〉
x

1
2
[|1,−2〉 − |2,−3〉 − |3,−4〉 + |4,−1〉] |2,−3〉 ⊔0 ⊔ ⊔ ⊔ ⊔1⊔

|ψ(4)
20

〉
x

1
2
[| − 1,−2〉 − | − 2,−3〉 − | − 3,−4〉 + | − 4,−1〉] | − 2,−3〉 ⊔1 ⊔ ⊔ ⊔ ⊔1⊔

|ψ(4)
21

〉
x

1
2
[|1,−2〉 − |2,−3〉 + |3,−4〉 − |4,−1〉] |1,−2〉 0 ⊔ ⊔ ⊔ ⊔1 ⊔ ⊔

|ψ(4)
22

〉
x

1
2
[| − 1,−2〉 − | − 2,−3〉 + | − 3,−4〉 − | − 4,−1〉] | − 1,−2〉 1 ⊔ ⊔ ⊔ ⊔1 ⊔ ⊔

|ψ(4)
23

〉
x

1
2
[|1,−2〉 + |2,−3〉 − |3,−4〉 − |4,−1〉] |3,−4〉 ⊔ ⊔ 0 ⊔ ⊔ ⊔ ⊔1

|ψ(4)
24

〉
x

1
2
[| − 1,−2〉 + | − 2,−3〉 − | − 3,−4〉 − | − 4,−1〉] | − 3,−4〉 ⊔ ⊔ 1 ⊔ ⊔ ⊔ ⊔1

|ψ(4)
25

〉
x

1
2
[|1, 2〉 + |2, 3〉 + |3, 4〉 + |4, 1〉] |1, 2〉 0 ⊔ ⊔ ⊔ ⊔0 ⊔ ⊔

|ψ(4)
26

〉
x

1
2
[| − 1, 2〉 + | − 2, 3〉 + | − 3, 4〉 + | − 4, 1〉] | − 1, 2〉 1 ⊔ ⊔ ⊔ ⊔0 ⊔ ⊔

|ψ(4)
27

〉
x

1
2
[|1, 2〉 − |2, 3〉 − |3, 4〉 + |4, 1〉] |3, 4〉 ⊔ ⊔ 0 ⊔ ⊔ ⊔ ⊔0

|ψ(4)
28

〉
x

1
2
[| − 1, 2〉 − | − 2, 3〉 − | − 3, 4〉 + | − 4, 1〉] | − 3, 4〉 ⊔ ⊔ 1 ⊔ ⊔ ⊔ ⊔0

|ψ(4)
29

〉
x

1
2
[|1, 2〉 − |2, 3〉 + |3, 4〉 − |4, 1〉] |4, 1〉 ⊔ ⊔ ⊔00 ⊔ ⊔⊔

|ψ(4)
30

〉
x

1
2
[| − 1, 2〉 − | − 2, 3〉 + | − 3, 4〉 − | − 4, 1〉] | − 4, 1〉 ⊔ ⊔ ⊔10 ⊔ ⊔⊔

|ψ(4)
31

〉
x

1
2
[|1, 2〉 + |2, 3〉 − |3, 4〉 − |4, 1〉] |2, 3〉 ⊔0 ⊔ ⊔ ⊔ ⊔0⊔

|ψ(4)
32

〉
x

1
2
[| − 1, 2〉 + | − 2, 3〉 − | − 3, 4〉 − | − 4, 1〉] | − 2, 3〉 ⊔1 ⊔ ⊔ ⊔ ⊔0⊔

|ψ(4)
33

〉
x

1
2
[|1,−3〉 + |2,−4〉 + |3,−1〉 + |4,−2〉] |3,−1〉 ⊔ ⊔ 0 ⊔ 1 ⊔ ⊔⊔

|ψ(4)
34

〉
x

1
2
[| − 1,−3〉 + | − 2,−4〉 + | − 3,−1〉 + | − 4,−2〉] | − 3, 1〉 ⊔ ⊔ 1 ⊔ 1 ⊔ ⊔⊔

|ψ(4)
35

〉
x

1
2
[|1,−3〉 − |2,−4〉 − |3,−1〉 + |4,−2〉] |2,−4〉 ⊔0 ⊔ ⊔ ⊔ ⊔ ⊔ 1

|ψ(4)
36

〉
x

1
2
[| − 1,−3〉 − | − 2,−4〉 − | − 3,−1〉 + | − 4,−2〉] | − 2,−4〉 ⊔1 ⊔ ⊔ ⊔ ⊔ ⊔ 1

|ψ(4)
37

〉
x

1
2
[|1,−3〉 − |2,−4〉 + |3,−1〉 − |4,−2〉] |4,−2〉 ⊔ ⊔ ⊔0 ⊔ 1 ⊔ ⊔

|ψ(4)
38

〉
x

1
2
[| − 1,−3〉 − | − 2,−4〉 + | − 3,−1〉 − | − 4,−2〉] | − 4,−2〉 ⊔ ⊔ ⊔1 ⊔ 1 ⊔ ⊔

|ψ(4)
39

〉
x

1
2
[|1,−3〉 + |2,−4〉 − |3,−1〉 − |4,−2〉] |1,−3〉 0 ⊔ ⊔ ⊔ ⊔ ⊔ 1⊔

|ψ(4)
40

〉
x

1
2
[| − 1,−3〉 + | − 2,−4〉 − | − 3,−1〉 − | − 4,−2〉] | − 1,−3〉 1 ⊔ ⊔ ⊔ ⊔ ⊔ 1⊔

|ψ(4)
41

〉
x

1
2
[|1, 3〉 + |2, 4〉 + |3, 1〉 + |4, 2〉] |4, 2〉 ⊔ ⊔ ⊔0 ⊔ 0 ⊔ ⊔

|ψ(4)
42

〉
x

1
2
[| − 1, 3〉 + | − 2, 4〉 + | − 3, 1〉 + | − 4, 2〉] | − 4, 2〉 ⊔ ⊔ ⊔1 ⊔ 0 ⊔ ⊔

|ψ(4)
43

〉
x

1
2
[|1, 3〉 − |2, 4〉 − |3, 1〉 + |4, 2〉] |1, 3〉 0 ⊔ ⊔ ⊔ ⊔ ⊔ 0⊔

|ψ(4)
44

〉
x

1
2
[| − 1, 3〉 − | − 2, 4〉 − | − 3, 1〉 + | − 4, 2〉] | − 1, 3〉 1 ⊔ ⊔ ⊔ ⊔ ⊔ 0⊔

|ψ(4)
45

〉
x

1
2
[|1, 3〉 − |2, 4〉 + |3, 1〉 − |4, 2〉] |3, 1〉 ⊔ ⊔ 0 ⊔ 0 ⊔ ⊔⊔

|ψ(4)
46

〉
x

1
2
[| − 1, 3〉 − | − 2, 4〉 + | − 3, 1〉 − | − 4, 2〉] | − 3, 1〉 ⊔ ⊔ 1 ⊔ 0 ⊔ ⊔⊔

|ψ(4)
47

〉
x

1
2
[|1, 3〉 + |2, 4〉 − |3, 1〉 − |4, 2〉] |2, 4〉 ⊔0 ⊔ ⊔ ⊔ ⊔ ⊔ 0

|ψ(4)
48

〉
x

1
2
[| − 1, 3〉 + | − 2, 4〉 − | − 3, 1〉 − | − 4, 2〉] | − 2, 4〉 ⊔1 ⊔ ⊔ ⊔ ⊔ ⊔ 0

|ψ(4)
49

〉
x

1
2
[|1,−4〉 + |2,−1〉 + |3,−2〉 + |4,−3〉] |2,−1〉 ⊔0 ⊔ ⊔1 ⊔ ⊔⊔

|ψ(4)
50

〉
x

1
2
[| − 1,−4〉 + | − 2,−1〉 + | − 3,−2〉 + | − 4,−3〉] | − 2,−1〉 ⊔1 ⊔ ⊔1 ⊔ ⊔⊔

|ψ(4)
51

〉
x

1
2
[|1,−4〉 − |2,−1〉 − |3,−2〉 + |4,−3〉] |4,−3〉 ⊔ ⊔ ⊔0 ⊔ ⊔1⊔

|ψ(4)
52

〉
x

1
2
[| − 1,−4〉 − | − 2,−1〉 − | − 3,−2〉 + | − 4,−3〉] | − 4,−3〉 ⊔ ⊔ ⊔1 ⊔ ⊔1⊔

|ψ(4)
53

〉
x

1
2
[|1,−4〉 − |2,−1〉 + |3,−2〉 − |4,−3〉] |3,−2〉 ⊔ ⊔ 0 ⊔ ⊔1 ⊔ ⊔

|ψ(4)
54

〉
x

1
2
[| − 1,−4〉 − | − 2,−1〉 + | − 3,−2〉 − | − 4,−3〉] | − 3,−2〉 ⊔ ⊔ 1 ⊔ ⊔1 ⊔ ⊔

|ψ(4)
55

〉
x

1
2
[|1,−4〉 + |2,−1〉 − |3,−2〉 − |4,−3〉] |1,−4〉 0 ⊔ ⊔ ⊔ ⊔ ⊔ ⊔1

|ψ(4)
56

〉
x

1
2
[| − 1,−4〉 + | − 2,−1〉 − | − 3,−2〉 − | − 4,−3〉] | − 1,−4〉 1 ⊔ ⊔ ⊔ ⊔ ⊔ ⊔1

|ψ(4)
57

〉
x

1
2
[|1, 4〉 + |2, 1〉 + |3, 2〉 + |4, 3〉] |3, 2〉 ⊔ ⊔ 0 ⊔ ⊔0 ⊔ ⊔

|ψ(4)
58

〉
x

1
2
[| − 1, 4〉 + | − 2, 1〉 + | − 3, 2〉 + | − 4, 3〉] | − 3, 2〉 ⊔ ⊔ 1 ⊔ ⊔0 ⊔ ⊔

|ψ(4)
59

〉
x

1
2
[|1, 4〉 − |2, 1〉 − |3, 2〉 + |4, 3〉] |1, 4〉 0 ⊔ ⊔ ⊔ ⊔ ⊔ ⊔0

|ψ(4)
60

〉
x

1
2
[| − 1, 4〉 − | − 2, 1〉 − | − 3, 2〉 + | − 4, 3〉] | − 1, 4〉 1 ⊔ ⊔ ⊔ ⊔ ⊔ ⊔0

|ψ(4)
61

〉
x

1
2
[|1, 4〉 − |2, 1〉 + |3, 2〉 − |4, 3〉] |2, 1〉 ⊔0 ⊔ ⊔0 ⊔ ⊔⊔

|ψ(4)
62

〉
x

1
2
[| − 1, 4〉 − | − 2, 1〉 + | − 3, 2〉 − | − 4, 3〉] | − 2, 1〉 ⊔1 ⊔ ⊔0 ⊔ ⊔⊔

|ψ(4)
63

〉
x

1
2
[|1, 4〉 + |2, 1〉 − |3, 2〉 − |4, 3〉] |4, 3〉 ⊔ ⊔ ⊔0 ⊔ ⊔0⊔

(4) 1
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the primitive assumption about the existence of such initial entangled orthonor-
mal states is not true and we do not have enough initial orthonormal states for
the procedure. Thus, there does not exist any related efficient dense coding
scheme for the N = 6 case. It can be seen that a similar argument also works
for the case of N = 3, which was explained before. The important point is that
one can see by a similar method as above that this scheme dose not work for
odd N ’s and N ’s which have odd halves. This inability to extend the scheme for
the mentioned N ’s is in accordance with the known fact concerning Hadamard
matrices, which says that the order of a Hadamard matrix is 1, 2 or 4k, with k
being a positive integer [79, 80]. At this stage, we understood that there might
be a kind of extension that takes any Hadamard matrix design and turns it
into a general framework for representing Bell states and the required unitary
operators which are used in the preparation and measurement processes. For
example, using the coefficients of kets for each family represented in Tables. B.3
and B.6, one can obtain 4 and 8-dimensional normalized Hadamard matrices,
respectively. Hence, it is possible to represent the Bell bases of each family and
also the unitary operators which transform them together using this kind of
Hadamard matrices, as we have shown generally in Eqs. (5.4) and (5.24).

To confirm our results as well as to obtain an explicit form for U(N) operator,
we have checked our procedure, step by step, for N = 8 and 12 cases. Here,
just, we have shown the results obtained for U(N) operator at these two cases.
For the N = 8 case, for example, we have obtained

U(8) = 1√
8

[(I ⊗ P1P3P6P8N1 . . .N8P1P3P6P8)

+ (L+ ⊗ P5N5P5N5P6N6P6N6P8N8P8N8L+)

+ (L2
+ ⊗ P1P3P6P7N1 . . . N8P1P3P6P7L

2
+)

+ (L3
+ ⊗ P3N3P3N3P6N6P6N6P7N7P7N7L

3
+)

+ (L4
+ ⊗ P1P4P5P8N1 . . . N8P1P4P5P8L

4
+)

+ (L5
+ ⊗ P3N3P3N3P4N4P4N4P8N8P8N8L

5
+)

+ (L6
+ ⊗ P1P4P5P7N1 . . . N8P1P4P5P7L

6
+)

+ (L7
+ ⊗ P4N4P4N4P5N5P5N5P7N7P7N7L

7
+)] (B.9)

where N1 . . . N8 = N1N2N3N4N5N6N7N8. Meantime, for N = 12, the U(N)

operator can be written in the following form

U(12) =

1√
12

[(I ⊗ P1P6P7P8P11P12N1 . . . N12P1P6P7P8P11P12)

+(L+ ⊗ P6N6P6N6P7N7P7N7P9N9P9N9P11N11P11N11P12N12P12N12L+)

+(L2
+ ⊗ P1P3P5P9P10N1 . . . N12P1P3P5P9P10L

2
+)

+(L3
+ ⊗ P6N6P6N6P7N7P7N7P8N8P8N8P10N10P10N10P12N12P12N12L

3
+)

+(L4
+ ⊗ P1P3P4P5P8P9P10N1 . . . N12P1P3P4P5P8P9P10L

4
+)

+(L5
+ ⊗ P3N3P3N3P4N4P4N4P5N5P5N5P8N8P8N8P9N9P9N9L

5
+)
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+(L6
+ ⊗ P1P4P6P7P10P12N1 . . . N12P1P4P6P7P10P12L

6
+)

+(L7
+ ⊗ P3N3P3N3P4N4P4N4P10N10P10N10P11N11P11N11P12N12P12N12L

7
+)

+(L8
+ ⊗ P1P4P5P6P9P11P12N1 . . .N12P1P4P5P6P9P11P12L

8
+)

+(L9
+ ⊗ P3N3P3N3P4N4P4N4P5N5P5N5P7N7P7N7P9N9P9N9L

9
+)

+(L10
+ ⊗ P1P3P7P8P11N1 . . .N12P1P3P7P8P11L

10
+ )

+(L11
+ ⊗ P5N5P5N5P6N6P6N6P8N8P8N8P10N10P10N10P11N11P11N11L

11
+ )].

(B.10)

In fact, these representations, in addition to the previous ones, as examples, help
one to obtain and understand the general form presented for the U(N) operator
in Eq. (5.39).



C. A COMMENT ON DENSE CODING IN PAIRWISE

ENTANGLED CASE

Recently, Lee et al. [87] have considered two different multiqubit schemes for
dense coding and compared their efficiency. In the pairwise scheme, Alice and
Bob share N separated maximally entangled pairs, so this scheme is equivalent
to N separate dense coding schemes. On the other hand, in the maximally
entangled scheme, Alice hasN qubits and Bob possesses one, which are prepared
in N+1 maximally entangled qubits. The number of different unitary operators
which can be constructed in the first scheme is 4N corresponding to the number
of different messages which can be sent. Since if we have M different messages
we can codify them in log2M bits of information, then log2(4

N ) = 2N bits of
information can be transferred by using the pairwise scheme form Alice to Bob,
by sending N particles. However, Lee et al. [87] performed an essential mistake
just here by which they have claimed that number of bits is as much as 2N ,
which is unfounded.1 This, of course, is inconsistent with the Holevo bound
[99, 100], which states that N qubits can at most carry N bits of information.
Furthermore, another criticism on their work can be found in [101].

Now, the rates of information gain (bits per unit time) that they have
deduced in their Eqs. (6) and (7) for the pairwise and maximally entangled
schemes must change into

rp =
2N

N(th + tc)

rm =
N + 1

th +Ntc
(C.1)

where tc and th are the operation times for CNOT and Hadamard gates, re-
spectively. If tc and th are assumed equal, it is seen that rp = rm = 1

tc
, and

consequently, there is no exponential efficiency in the pairwise scheme. There-
fore, considering N different Alices or combining them as a sole Alice (which
changes the number of parties involved but not the number of sent particles)
cannot lead into a more efficient protocol as they have claimed. This is in
accordance with the result of Bose et al. [69].

Meantime, it should be noted that a more reasonable measure of efficiency
of the scheme can be the number of bits transferred in the protocol per needed

1 It is curious to note, though, that they still claim that the 2N result is correct [96].
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time per sent particles. By considering this we have

rp =
2

N(th + tc)

rm =
N + 1

N(th +Ntc)
. (C.2)

Now these quantities give more better sense of efficiency of the protocols, though,
the sent particles are the same here. This concept of efficiency for these schemes
has been also applied by Bose et al. [69].
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